Skip to main content

2024 | OriginalPaper | Buchkapitel

The Order Barrier for the \(L^1\)-approximation of the Log-Heston SDE at a Single Point

verfasst von : Annalena Mickel, Andreas Neuenkirch

Erschienen in: Monte Carlo and Quasi-Monte Carlo Methods

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the \(L^1\)-approximation of the log-Heston SDE at the terminal time point by arbitrary methods that use an equidistant discretization of the driving Brownian motion. We show that such methods can achieve at most order \( \min \{ \nu , \tfrac{1}{2} \}\), where \(\nu \) is the Feller index of the underlying CIR process. As a consequence Euler-type schemes are optimal for \(\nu \ge 1\), since they have convergence order \(\tfrac{1}{2}-\epsilon \) for \(\epsilon >0\) arbitrarily small in this regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Stat. Probab. Lett. 83, 602–607 (2013)MathSciNetCrossRef Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Stat. Probab. Lett. 83, 602–607 (2013)MathSciNetCrossRef
2.
Zurück zum Zitat Cambanis, S., Hu, Y.: Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Rep. 59, 211–240 (1996)MathSciNetCrossRef Cambanis, S., Hu, Y.: Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Rep. 59, 211–240 (1996)MathSciNetCrossRef
3.
Zurück zum Zitat Castell, F., Gaines, J.: The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. Henri Poincaré, Probab. Stat. 32, 231–250 (1996) Castell, F., Gaines, J.: The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. Henri Poincaré, Probab. Stat. 32, 231–250 (1996)
4.
Zurück zum Zitat Clark, J., Cameron, R.: The maximum rate of convergence of discrete approximations for stochastic differential equations. In: Grigelionis, B. (eds.), Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978) Lecture Notes in Control and Information Sci. vol. 25, pp. 162–171. Springer, Berlin, Heidelberg (1980) Clark, J., Cameron, R.: The maximum rate of convergence of discrete approximations for stochastic differential equations. In: Grigelionis, B. (eds.), Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978) Lecture Notes in Control and Information Sci. vol. 25, pp. 162–171. Springer, Berlin, Heidelberg (1980)
5.
Zurück zum Zitat Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. R. Soc. A. 468, 1105–1115 (2012)MathSciNetCrossRef Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. R. Soc. A. 468, 1105–1115 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Hefter, M., Herzwurm, A.: Strong convergence rates for Cox-Ingersoll-Ross processes—full parameter range. J. Math. Anal. Appl. 459, 1079–1101 (2016)MathSciNetCrossRef Hefter, M., Herzwurm, A.: Strong convergence rates for Cox-Ingersoll-Ross processes—full parameter range. J. Math. Anal. Appl. 459, 1079–1101 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Hefter, M., Herzwurm, A.: Optimal strong approximation of the one-dimensional squared Bessel process. Commun. Math. Sci. 15, 2121–2141 (2017)MathSciNetCrossRef Hefter, M., Herzwurm, A.: Optimal strong approximation of the one-dimensional squared Bessel process. Commun. Math. Sci. 15, 2121–2141 (2017)MathSciNetCrossRef
9.
Zurück zum Zitat Hefter, M., Herzwurm, A., Müller-Gronbach, T.: Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. Ann. Appl. Probab. 29, 178–216 (2019)MathSciNetCrossRef Hefter, M., Herzwurm, A., Müller-Gronbach, T.: Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. Ann. Appl. Probab. 29, 178–216 (2019)MathSciNetCrossRef
10.
Zurück zum Zitat Hefter, M., Jentzen, A.: On arbitrarily slow convergence rates for strong numerical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes. Finance Stoch. 23, 139–172 (2019)MathSciNetCrossRef Hefter, M., Jentzen, A.: On arbitrarily slow convergence rates for strong numerical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes. Finance Stoch. 23, 139–172 (2019)MathSciNetCrossRef
11.
Zurück zum Zitat Hofmann, N., Müller-Gronbach, T., Ritter, K.: Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comput. 69, 1017–1034 (2000)MathSciNetCrossRef Hofmann, N., Müller-Gronbach, T., Ritter, K.: Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comput. 69, 1017–1034 (2000)MathSciNetCrossRef
12.
Zurück zum Zitat Hofmann, N., Müller-Gronbach, T., Ritter, K.: Step size control for the uniform approximation of systems of stochastic differential equations with additive noise. Ann. Appl. Probab. 10, 616–633 (2000)MathSciNetCrossRef Hofmann, N., Müller-Gronbach, T., Ritter, K.: Step size control for the uniform approximation of systems of stochastic differential equations with additive noise. Ann. Appl. Probab. 10, 616–633 (2000)MathSciNetCrossRef
13.
Zurück zum Zitat Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential equations. J. Compl. 17, 117–153 (2001)MathSciNetCrossRef Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential equations. J. Compl. 17, 117–153 (2001)MathSciNetCrossRef
14.
Zurück zum Zitat Hofmann, N., Müller-Gronbach, T., Ritter, K.: Linear vs standard information for scalar stochastic differential equations. J. Compl. 18, 394–414 (2002)MathSciNetCrossRef Hofmann, N., Müller-Gronbach, T., Ritter, K.: Linear vs standard information for scalar stochastic differential equations. J. Compl. 18, 394–414 (2002)MathSciNetCrossRef
15.
Zurück zum Zitat Hurd, T.R., Kuznetsov, A.: Explicit formulas for Laplace transforms of stochastic integrals. Markov Process. Relat. Fields 14, 277–290 (2008)MathSciNet Hurd, T.R., Kuznetsov, A.: Explicit formulas for Laplace transforms of stochastic integrals. Markov Process. Relat. Fields 14, 277–290 (2008)MathSciNet
17.
Zurück zum Zitat Jentzen, A., Müller-Gronbach, T., Yaroslavtseva, L.: On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci. 14, 1477–1500 (2016)MathSciNetCrossRef Jentzen, A., Müller-Gronbach, T., Yaroslavtseva, L.: On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci. 14, 1477–1500 (2016)MathSciNetCrossRef
18.
Zurück zum Zitat Müller-Gronbach, T., Ritter, K.: Minimal errors for strong and weak approximation of stochastic differential equations. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 53–82. Springer, Berlin (2008)CrossRef Müller-Gronbach, T., Ritter, K.: Minimal errors for strong and weak approximation of stochastic differential equations. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 53–82. Springer, Berlin (2008)CrossRef
19.
Zurück zum Zitat Mickel, A.: Weak and strong approximation of the log-Heston Model by Euler-type methods and related topics. Dissertation, University of Mannheim (2023) Mickel, A.: Weak and strong approximation of the log-Heston Model by Euler-type methods and related topics. Dissertation, University of Mannheim (2023)
20.
Zurück zum Zitat Mickel, A., Neuenkirch, A.: Sharp \({L}^1\)-approximation of the log-Heston SDE by Euler-type methods. J. Comput. Fin. 26, 67–100 (2023) Mickel, A., Neuenkirch, A.: Sharp \({L}^1\)-approximation of the log-Heston SDE by Euler-type methods. J. Comput. Fin. 26, 67–100 (2023)
21.
Zurück zum Zitat Müller-Gronbach, T.: The optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Probab. 12, 664–690 (2002)MathSciNetCrossRef Müller-Gronbach, T.: The optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Probab. 12, 664–690 (2002)MathSciNetCrossRef
22.
Zurück zum Zitat Müller-Gronbach, T.: Strong approximation of systems of stochastic differential equations. Habilitation thesis, Technical University of Darmstadt (2002) Müller-Gronbach, T.: Strong approximation of systems of stochastic differential equations. Habilitation thesis, Technical University of Darmstadt (2002)
23.
Zurück zum Zitat Müller-Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14, 1605–1642 (2004)MathSciNetCrossRef Müller-Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14, 1605–1642 (2004)MathSciNetCrossRef
24.
Zurück zum Zitat Müller-Gronbach, T., Yaroslavtseva, L.: A note on strong approximation of SDEs with smooth coefficients that have at most linearly growing derivatives. J. Math. Anal. Appl. 467, 1013–1031 (2018)MathSciNetCrossRef Müller-Gronbach, T., Yaroslavtseva, L.: A note on strong approximation of SDEs with smooth coefficients that have at most linearly growing derivatives. J. Math. Anal. Appl. 467, 1013–1031 (2018)MathSciNetCrossRef
25.
Zurück zum Zitat Newton, N.J.: An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics 19, 175–206 (1986)MathSciNetCrossRef Newton, N.J.: An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics 19, 175–206 (1986)MathSciNetCrossRef
26.
Zurück zum Zitat Newton, N.J.: An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stochastics Stochastics Rep. 29, 227–258 (1990)MathSciNetCrossRef Newton, N.J.: An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stochastics Stochastics Rep. 29, 227–258 (1990)MathSciNetCrossRef
27.
Zurück zum Zitat Newton, N.J.: Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J. Appl. Math. 51, 542–567 (1991)MathSciNetCrossRef Newton, N.J.: Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J. Appl. Math. 51, 542–567 (1991)MathSciNetCrossRef
28.
Zurück zum Zitat Traub, J., Wasilkowski, G., Woźniakowski, H.: Information-Based Complexity. Academic Press Inc, Boston, MA (1988) Traub, J., Wasilkowski, G., Woźniakowski, H.: Information-Based Complexity. Academic Press Inc, Boston, MA (1988)
29.
Zurück zum Zitat Yaroslavtseva, L.: On non-polynomial lower error bounds for adaptive strong approximation of SDEs. J. Compl. 42, 1–18 (2017)MathSciNetCrossRef Yaroslavtseva, L.: On non-polynomial lower error bounds for adaptive strong approximation of SDEs. J. Compl. 42, 1–18 (2017)MathSciNetCrossRef
Metadaten
Titel
The Order Barrier for the -approximation of the Log-Heston SDE at a Single Point
verfasst von
Annalena Mickel
Andreas Neuenkirch
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_24