Skip to main content

2016 | OriginalPaper | Buchkapitel

11. The Origin of Oxygenic Photosynthesis and Its Impact on the Atmosphere

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evolutionary history of photosynthesis is complicated by the existence of several pathways and two major types: anoxygenic and oxygenic. The former is thought to have preceded the latter by a highly uncertain time interval. Evidence for photosynthesis is found in both the fossil record (in the form of stomatolites) and in the isotope record (in the form of carbon isotope variations). Stromatolites indicate the presence of bacterial mats capable of photosynthesis as early as 3.5 BYBP, whether anoxygenic or oxygenic has not been (cannot be?) determined. Carbon isotope signatures indicate an antiquity perhaps 200-300 million years greater. Oxygenic photosynthesis very likely began by 2.7-2.8 BYBP based in molecular fossils thought to indicate the presence of cyanobacteria. Sulfur isotopes indicate the general oxidation of Earth’s atmosphere at about 2.3-2.4 BYBP, some few hundred million years after the advent of oxygenic photosynthesis. Given that the probable source of atmospheric oxygen is from cyanobacteria presents a problem in this long delay in oxidizing the Earth’s surface and atmosphere.
The carbon isotope record shows long-term consistency of carbon isotopes in organic sediment and carbonate sediment, implying a long-standing ratio of inorganic (carbonate) carbon to organic carbon. The delay in oxidation of the surface environment is puzzling if fixed (photosynthetic) carbon has been in a more or less constant proportion to carbonate carbon assuming photosynthetic processing of carbonate is responsible for both the organic carbon and the oxygen at the surface. This problem is in addition to the delay in oxidation noted above. At least a partial explanation may lie in nutrient limitations that would have prevented the cyanobacteria from generating the implied amount of both biomass and free oxygen. Examination of such nutrient limitations shows that they are inadequate over the necessary time interval; there is simply too much available nutrient in too short a time to account for the delay in oxidation. It is especially interesting to note that one of the important nutrients, phosphorus, can be utilized by various cyanobacteria in more chemically reduced forms than the simple phosphate (P=+5 oxidation) which is prominent today. This may be a further indication that primitive photosynthesizers may have been especially well adapted to the more reduced conditions on the early Earth. Attempts to explain the delay in oxidation by trapping of CO2 in rocks are inadequate because of the rapid cycling of CO2 through the geochemical systems, with a residence time in likely reservoirs of only about 50 million years, compared to 300 million years for the oxidation delay. The likely answer to this problem is longer term storage of carbon in abiotic reduced compounds which only slowly become available to the photosynthetic system
The conversion of the reduced carbon inventory into carbonate/carbon dioxide for photosynthetic processing takes place via subduction of organic compounds into the upper mantle, reaction of same under iron-free magmatic conditions (with production of free hydrogen) and release of the CO2 and hydrogen as volcanic emissions. This process can easily take hundreds of millions of years since subduction of organic sediments is probably relatively inefficient compared to the size of the total organic carbon pool, most of which is not in the form of deposited sediment. On the other hand, the rate of production of hydrogen (and other hydrogen-carrying compounds such as methane and ammonia) could have been sufficient to produce overall oxidation of the reduced compounds (by ultimate hydrogen loss to space) in perhaps a billion years or so, to provide for the necessary production of the carbonate rock inventory.
Consideration of the implications of an organic compound-rich early Earth suggests a more complicated model for evolution of carbon reservoirs and interpretation of the carbon isotope record. Instead of starting with CO2 as the main (sole) carbon reservoir, with conversion by photosynthesis producing both organic deposits and complementary oxygen, starting with organic carbon (abiotic) as the main carbon reservoir provides a mechanism to avoid problems with the stable isotope record, the delay in oxidation following the advent of oxygenic photosynthesis, the requisite conditions for generating prebiotic compounds in quantity, and the evolution of surface conditions on a suitable time scale. Adding this complicating factor to geochemical and atmospheric modelling has the potential to produce more realistic (if more complex) models that are consistent with the geological and geochemical records

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beversdorf LJ, White AE, Bjorkman KM, Letelier RM, Karl DM (2010) Phosphonate metabolism of Trichodesmium IMS101 and the production of greenhouse gases. Limnol Oceanogr 55:1768–1778CrossRef Beversdorf LJ, White AE, Bjorkman KM, Letelier RM, Karl DM (2010) Phosphonate metabolism of Trichodesmium IMS101 and the production of greenhouse gases. Limnol Oceanogr 55:1768–1778CrossRef
Zurück zum Zitat Blankenship RE (2013) Molecular mechanisms of photosynthesis. Wiley, New York, p 336 Blankenship RE (2013) Molecular mechanisms of photosynthesis. Wiley, New York, p 336
Zurück zum Zitat Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean microfossils and the rise of eucaryotes. Science 285:1033–1036CrossRef Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean microfossils and the rise of eucaryotes. Science 285:1033–1036CrossRef
Zurück zum Zitat Broecker WS (1970) A boundary condition on the evolution of atmospheric oxygen. J Geophys Res 75:3553–3557CrossRef Broecker WS (1970) A boundary condition on the evolution of atmospheric oxygen. J Geophys Res 75:3553–3557CrossRef
Zurück zum Zitat Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trcihodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229CrossRef Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trcihodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229CrossRef
Zurück zum Zitat Catling DC (2006) Comment on “a hydrogen-rich early earth atmosphere”. Science 311:38aCrossRef Catling DC (2006) Comment on “a hydrogen-rich early earth atmosphere”. Science 311:38aCrossRef
Zurück zum Zitat Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20CrossRef Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20CrossRef
Zurück zum Zitat Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13CrossRef Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13CrossRef
Zurück zum Zitat Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758CrossRef Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758CrossRef
Zurück zum Zitat Gislason SR, Oelkers EH, Eiriksdottir ES, Kardjilov MI, Gisladottir G, Sigfusson B, Snorrason A, Elefsen S, Hardardottir J, Torssander P, Oskarsson N (2009) Direct evidence of the feedback between climate and weathering. Earth Planet Sci Lett 277:213–222CrossRef Gislason SR, Oelkers EH, Eiriksdottir ES, Kardjilov MI, Gisladottir G, Sigfusson B, Snorrason A, Elefsen S, Hardardottir J, Torssander P, Oskarsson N (2009) Direct evidence of the feedback between climate and weathering. Earth Planet Sci Lett 277:213–222CrossRef
Zurück zum Zitat Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geol 101:235–243CrossRef Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geol 101:235–243CrossRef
Zurück zum Zitat Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137CrossRef Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137CrossRef
Zurück zum Zitat Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc Lond B Biol Sci 361:931–950CrossRef Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc Lond B Biol Sci 361:931–950CrossRef
Zurück zum Zitat Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, p 582 Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, p 582
Zurück zum Zitat Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE (2015) Iron oxides, divalent cations, silica, and the early earth phosphorus crisis, Geology, 43:135–138 Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE (2015) Iron oxides, divalent cations, silica, and the early earth phosphorus crisis, Geology, 43:135–138
Zurück zum Zitat Kerr AC (2005) La Isla de Gorgona, Colombia: a petrological enigma? Lithos 84:77–101CrossRef Kerr AC (2005) La Isla de Gorgona, Colombia: a petrological enigma? Lithos 84:77–101CrossRef
Zurück zum Zitat Martinez A, Osburne MS, Sharma AK, DeLong EF, Chisholm SW (2012) Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ Microbiol 14:1363–1377CrossRef Martinez A, Osburne MS, Sharma AK, DeLong EF, Chisholm SW (2012) Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ Microbiol 14:1363–1377CrossRef
Zurück zum Zitat Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E. and F. Spon, London, pp 15–40 Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E. and F. Spon, London, pp 15–40
Zurück zum Zitat Nakamura K, Kato Y (2004) Carbonitization of oceanic crust by seafloor hydrothermal activity and its significance as a CO2 sink in the early Archean. Geochem Cosmochim Acta 68:4595–4618CrossRef Nakamura K, Kato Y (2004) Carbonitization of oceanic crust by seafloor hydrothermal activity and its significance as a CO2 sink in the early Archean. Geochem Cosmochim Acta 68:4595–4618CrossRef
Zurück zum Zitat Sleep NH (2010) The Hadean-Archean environment. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 35–48 Sleep NH (2010) The Hadean-Archean environment. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 35–48
Zurück zum Zitat Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106:1373–1399CrossRef Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106:1373–1399CrossRef
Zurück zum Zitat Van Mooy BAS, Krupke A, Dyhrman ST, Fredricks HF, Frischkorn KR, Ossolinski JE, Repeta DJ, Rauco M, Seewald JD, Sylva SP (2015) Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348:783–785CrossRef Van Mooy BAS, Krupke A, Dyhrman ST, Fredricks HF, Frischkorn KR, Ossolinski JE, Repeta DJ, Rauco M, Seewald JD, Sylva SP (2015) Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348:783–785CrossRef
Zurück zum Zitat Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York, p 318 Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York, p 318
Zurück zum Zitat Walker JGC, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782CrossRef Walker JGC, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782CrossRef
Zurück zum Zitat White AE, Karl DM, Bjorkman KM, Beversdorf LJ, Letelier RM (2010) Production of organic matter by Trichodesmium IMS101 as a function of phosphorus source. Limnol Oceanogr 55:1755–1767CrossRef White AE, Karl DM, Bjorkman KM, Beversdorf LJ, Letelier RM (2010) Production of organic matter by Trichodesmium IMS101 as a function of phosphorus source. Limnol Oceanogr 55:1755–1767CrossRef
Zurück zum Zitat Zahnle KF (1986) Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J Geophys Res 91:2819–2834CrossRef Zahnle KF (1986) Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J Geophys Res 91:2819–2834CrossRef
Zurück zum Zitat Zahnle K, Catling D (2014) Waiting for O2. In: Shaw GH (ed) Earth’s early atmosphere and surface environment. Geological Society of America (Special Paper 504), Denver, pp 37–48 Zahnle K, Catling D (2014) Waiting for O2. In: Shaw GH (ed) Earth’s early atmosphere and surface environment. Geological Society of America (Special Paper 504), Denver, pp 37–48
Metadaten
Titel
The Origin of Oxygenic Photosynthesis and Its Impact on the Atmosphere
verfasst von
George H. Shaw
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-21972-1_11