Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. The Potential Energy Surface in Molecular Quantum Mechanics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The idea of a Potential Energy Surface (PES) forms the basis of almost all accounts of the mechanisms of chemical reactions, and much of theoretical molecular spectroscopy. It is assumed that, in principle, the PES can be calculated by means of clamped-nuclei electronic structure calculations based upon the Schrödinger Coulomb Hamiltonian. This article is devoted to a discussion of the origin of the idea, its development in the context of the Old Quantum Theory, and its present status in the quantum mechanics of molecules. It is argued that its present status must be regarded as uncertain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
René Marcelin was killed in action fighting for France in September 1914.
 
2
That a molecule must reach a certain region of space at a suitable angle, that its speed must exceed a certain limit, that its internal structure must correspond to an unstable configuration etc.; …
 
3
Nevertheless it seems proper to regard Marcelin’s introduction of phase-space variables and a critical reaction surface into chemical dynamics as the beginning of a formulation of the Transition State Theory that was developed by Wigner in the 1930’s [1215]. The 2n phase-space variables q,p were identified with the n nuclei specified in the chemical formula of the participating species, and the Hamiltonian https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-01529-3_1/311421_1_En_1_IEq11_HTML.gif was that for classical nuclear motion on a Potential Energy Surface; this dynamics was assumed to give rise to a critical surface which was such that reaction trajectories cross the surface precisely once. The classical nature of the formalism was quite clear because the Uncertainty Principle precludes the precise specification of position on the critical surface simultaneously with the momentum of the nuclei.
 
4
This is strictly true only for integrable Hamiltonians [26].
 
5
The difficulties for action-angle quantization posed by the existence of chaotic motions in non-separable systems [30] were recognized by Einstein at the time the Old Quantum Theory was developed [31].
 
6
This is the earliest reference we know of where the idea of adiabatic separation of the electrons and the nuclei is proposed explicitly.
 
7
This also deals with the uninteresting overall translation of the molecule.
 
8
The rotational and vibrational energies occur together because of the choice of the parameter λ; as is well-known, Born and Oppenheimer later showed that a better choice is to take the quarter power of the mass ratio as this separates the vibrational and rotational energies in the orders of the perturbation expansion [38].
 
9
The details can be found in the original paper [38], and in various English language presentations, for example [4446].
 
10
If one sets κ=0…one obtains a differential equation in the x k alone, the X l appearing as parameters:…. Evidently, this represents the electronic motion for stationary nuclei.
 
11
W(X) in the notation of the above quotation.
 
12
The reader may find it helpful to refer to the Appendix which summarizes some mathematical notions that are needed here, and illustrates them in a simple model of coupled oscillators with two degrees of freedom.
 
13
It is always possible to split off the kinetic energy of the centre-of-mass without any approximation; with this choice we retain the separation of the electronic and nuclear kinetic energies as well, as in (1.24). Explicit formulae are given in e.g. [3] where it is shown that the nuclear kinetic energy terms involve reciprocals of the nuclear masses, so that overall, the nuclear kinetic energy is proportional to κ 4.
 
14
After the elimination of the centre-of-mass variables \(\hat{\mathsf{H}}^{\mathrm{elec}}\) is playing the role of \(\hat{H}_{o}\) in (1.20).
 
15
We assume that the centre-of-mass contributions are eliminated as usual.
 
16
The multiminima case can also be treated in this way.
 
17
The Lorentz Theory of the electron for example [77].
 
18
A similar requirement must be placed on the denominator in (12) of [85] for the equation to provide a secure definition.
 
19
In its original form b=b o , the equilibrium configuration, on the right-hand side of (1.50).
 
20
The variables are expressed in dimensionless form for simplicity. The quantum oscillator \(\hat{\mathsf{h}}=\frac{1}{2}(\hat{\mathsf{p}}^{2}+\hat{\mathsf{q}}^{2})\) has eigenvalues \(n+\frac{1}{2}\).
 
Literatur
2.
Zurück zum Zitat Thomson JJ (1899) Philos Mag 48:547–567 Thomson JJ (1899) Philos Mag 48:547–567
3.
Zurück zum Zitat Woolley RG, Sutcliffe BT (2003) In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol 1. Kluwer Academic, Dordrecht Woolley RG, Sutcliffe BT (2003) In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol 1. Kluwer Academic, Dordrecht
5.
Zurück zum Zitat Marcelin R (1914) Contribution à l’étude de la cinétique physico-chimique. Gauthier-Villars, Paris Marcelin R (1914) Contribution à l’étude de la cinétique physico-chimique. Gauthier-Villars, Paris
6.
Zurück zum Zitat Marcelin R (1915) Ann Phys 3:120–231 Marcelin R (1915) Ann Phys 3:120–231
7.
Zurück zum Zitat Marcelin R (1914) C R Hebd Séances Acad Sci 158:116–118 Marcelin R (1914) C R Hebd Séances Acad Sci 158:116–118
8.
Zurück zum Zitat Marcelin R (1914) C R Hebd Séances Acad Sci 158:407–409 Marcelin R (1914) C R Hebd Séances Acad Sci 158:407–409
9.
Zurück zum Zitat Gibbs JW (1902) Elementary principles in statistical mechanics. C. Scribner, New York Gibbs JW (1902) Elementary principles in statistical mechanics. C. Scribner, New York
11.
Zurück zum Zitat Duhem P (1911) Traité d’énergétique, 2 vols. Gauthier-Villars, Paris Duhem P (1911) Traité d’énergétique, 2 vols. Gauthier-Villars, Paris
12.
Zurück zum Zitat Pelzer H, Wigner EP (1932) Z Phys Chem Abt B 15:445–471 Pelzer H, Wigner EP (1932) Z Phys Chem Abt B 15:445–471
15.
16.
Zurück zum Zitat Earnshaw S (1842) Trans Camb Philos Soc 7:97–112 Earnshaw S (1842) Trans Camb Philos Soc 7:97–112
18.
19.
Zurück zum Zitat Schwarzschild K (1916) Sitzber Preuss Akad Wiss 1:548–561 Schwarzschild K (1916) Sitzber Preuss Akad Wiss 1:548–561
20.
Zurück zum Zitat Heurlinger T (1919) Z Phys 20:188–190 Heurlinger T (1919) Z Phys 20:188–190
21.
Zurück zum Zitat Born M (1925) Vorlesungen über Atommechanik. Springer, Berlin. The mechanics of the atom. Translated by JW Fisher (1927). George Bell and Sons, London Born M (1925) Vorlesungen über Atommechanik. Springer, Berlin. The mechanics of the atom. Translated by JW Fisher (1927). George Bell and Sons, London
22.
Zurück zum Zitat Sommerfeld A (1919) Atombau und Spektrallinien. Verlag F Vieweg und Sohn, Braunschweig Sommerfeld A (1919) Atombau und Spektrallinien. Verlag F Vieweg und Sohn, Braunschweig
24.
Zurück zum Zitat Bohr N (1918) Kgl Danske Vid Selskab 4:1–36 Bohr N (1918) Kgl Danske Vid Selskab 4:1–36
28.
29.
Zurück zum Zitat Thirring W (1987) In: Kilmister CW (ed) Schrödinger, centenary celebrations of a polymath. Cambridge University Press, Cambridge Thirring W (1987) In: Kilmister CW (ed) Schrödinger, centenary celebrations of a polymath. Cambridge University Press, Cambridge
30.
Zurück zum Zitat Poincaré H (1899) Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris Poincaré H (1899) Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris
31.
Zurück zum Zitat Einstein A (1917) Verh Dtsch Phys Ges 19:82–92 Einstein A (1917) Verh Dtsch Phys Ges 19:82–92
34.
Zurück zum Zitat Kemble EC (1926) Molecular spectra of gases. Bull NRC 11(57):303–304 Kemble EC (1926) Molecular spectra of gases. Bull NRC 11(57):303–304
35.
Zurück zum Zitat Kragh H (2012) Neils Bohr and the quantum atom: the Bohr model of atomic structure, 1913–1925. Oxford University Press, Oxford, p 239 CrossRef Kragh H (2012) Neils Bohr and the quantum atom: the Bohr model of atomic structure, 1913–1925. Oxford University Press, Oxford, p 239 CrossRef
40.
Zurück zum Zitat London F (1928) In: Quantentheorie und Chemie. Hirzel, Leipzig, p 59 London F (1928) In: Quantentheorie und Chemie. Hirzel, Leipzig, p 59
41.
Zurück zum Zitat London F (1928) In: Probleme der modernen Physik. Hirzel, Leipzig, p 104 London F (1928) In: Probleme der modernen Physik. Hirzel, Leipzig, p 104
44.
Zurück zum Zitat Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford
45.
47.
Zurück zum Zitat Sutcliffe BT (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding, part 1. Springer, Berlin, pp 1–28 Sutcliffe BT (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding, part 1. Springer, Berlin, pp 1–28
48.
Zurück zum Zitat Pauling L, Wilson EB Jr. (1935) Introduction to quantum mechanics. McGraw-Hill, New York. See especially Chap X, p 262 Pauling L, Wilson EB Jr. (1935) Introduction to quantum mechanics. McGraw-Hill, New York. See especially Chap X, p 262
49.
Zurück zum Zitat Born M (1951) Nachr. Akad. Wiss. Göttingen. Math-Phys. Klasse IIa. Math Phys Chem Abt, S Art Nr 6:1–3 Born M (1951) Nachr. Akad. Wiss. Göttingen. Math-Phys. Klasse IIa. Math Phys Chem Abt, S Art Nr 6:1–3
52.
53.
Zurück zum Zitat Reed M, Simon B (1978) Analysis of operators. Methods of modern mathematical physics, vol IV. Academic Press, New York Reed M, Simon B (1978) Analysis of operators. Methods of modern mathematical physics, vol IV. Academic Press, New York
54.
Zurück zum Zitat Kato T (1951) Trans Am Math Soc 70:195–218 Kato T (1951) Trans Am Math Soc 70:195–218
56.
Zurück zum Zitat Messiah A (1961) Quantum mechanics. North-Holland, Amsterdam Messiah A (1961) Quantum mechanics. North-Holland, Amsterdam
57.
58.
Zurück zum Zitat Broeckhove J, Lathouwers L, van Leuven P (1991) J Math Chem 6:207–241 CrossRef Broeckhove J, Lathouwers L, van Leuven P (1991) J Math Chem 6:207–241 CrossRef
61.
Zurück zum Zitat Combes J-M (1975) In: International symposium on mathematical physics, Kyoto University, Kyoto. Lecture notes in physics, vol 39, pp 467–471 Combes J-M (1975) In: International symposium on mathematical physics, Kyoto University, Kyoto. Lecture notes in physics, vol 39, pp 467–471
62.
Zurück zum Zitat Combes J-M (1977) Acta Phys Austriaca Suppl XVII:139–159 Combes J-M (1977) Acta Phys Austriaca Suppl XVII:139–159
63.
Zurück zum Zitat Combes J-M, Seiler R (1980) Quantum dynamics of molecules. In: Woolley RG (ed) NATO ASI B57. Plenum, New York Combes J-M, Seiler R (1980) Quantum dynamics of molecules. In: Woolley RG (ed) NATO ASI B57. Plenum, New York
64.
Zurück zum Zitat Combes J-M, Duclos P, Seiler R (1981) In: Velo G, Wightman A (eds) Rigorous atomic and molecular physics. Plenum, New York Combes J-M, Duclos P, Seiler R (1981) In: Velo G, Wightman A (eds) Rigorous atomic and molecular physics. Plenum, New York
65.
Zurück zum Zitat Löwdin P-O (1966) Perturbation theory and its application in quantum mechanics. In: Wilcox CH (ed) Proceedings of Madison symposium. Wiley, New York Löwdin P-O (1966) Perturbation theory and its application in quantum mechanics. In: Wilcox CH (ed) Proceedings of Madison symposium. Wiley, New York
66.
Zurück zum Zitat Zhislin G (1960) Tr Mosc Mat Obsc 9:81–128 Zhislin G (1960) Tr Mosc Mat Obsc 9:81–128
67.
Zurück zum Zitat van Winter C (1964) Kgl Danske Vid Selskab 1:1–60 van Winter C (1964) Kgl Danske Vid Selskab 1:1–60
68.
Zurück zum Zitat Hunziker W (1966) Helv Phys Acta 39:451–462 Hunziker W (1966) Helv Phys Acta 39:451–462
69.
Zurück zum Zitat Hagedorn GA, Joye A (2007) In: Gesztezy F, Deift P, Galvez C, Perry P, Schlag GW (eds) Spectral theory and mathematical physics. A festschrift in honor of Barry Simon’s 60th birthday. Oxford University Press, London, p 203 CrossRef Hagedorn GA, Joye A (2007) In: Gesztezy F, Deift P, Galvez C, Perry P, Schlag GW (eds) Spectral theory and mathematical physics. A festschrift in honor of Barry Simon’s 60th birthday. Oxford University Press, London, p 203 CrossRef
70.
Zurück zum Zitat Klein M, Martinez A, Seiler R, Wang XP (1992) Commun Math Phys 143:607–639 CrossRef Klein M, Martinez A, Seiler R, Wang XP (1992) Commun Math Phys 143:607–639 CrossRef
73.
Zurück zum Zitat Primas H (1983) Chemistry, quantum mechanics and reductionism, 2nd edn. Springer, Berlin CrossRef Primas H (1983) Chemistry, quantum mechanics and reductionism, 2nd edn. Springer, Berlin CrossRef
74.
Zurück zum Zitat Woolley RG (1980) Isr J Chem 19:30–46 Woolley RG (1980) Isr J Chem 19:30–46
76.
Zurück zum Zitat Anderson PW (1984) Basic notions of condensed matter physics. Benjamin-Cummings, Redwood City Anderson PW (1984) Basic notions of condensed matter physics. Benjamin-Cummings, Redwood City
77.
Zurück zum Zitat Lorentz HA (1909) The theory of electrons and its applications to the phenomena of light and radiant heat. Teubner, Leipzig Lorentz HA (1909) The theory of electrons and its applications to the phenomena of light and radiant heat. Teubner, Leipzig
80.
81.
82.
Zurück zum Zitat Lieb EH, Seiringer R (2010) The stability of matter in quantum mechanics. Cambridge University Press, Cambridge Lieb EH, Seiringer R (2010) The stability of matter in quantum mechanics. Cambridge University Press, Cambridge
84.
88.
Zurück zum Zitat Wilson EB Jr. (1979) Int J Quantum Chem, Symp 13:5–14 Wilson EB Jr. (1979) Int J Quantum Chem, Symp 13:5–14
91.
Zurück zum Zitat Henderson JR, Tennyson J, Sutcliffe BT (1993) J Chem Phys 98:7191–7203 CrossRef Henderson JR, Tennyson J, Sutcliffe BT (1993) J Chem Phys 98:7191–7203 CrossRef
92.
93.
94.
Zurück zum Zitat Dixmier J (1981) Von Neumann algebras. Elsevier/North-Holland, Amsterdam Dixmier J (1981) Von Neumann algebras. Elsevier/North-Holland, Amsterdam
95.
Zurück zum Zitat Ballentine LE (1990) Quantum mechanics. Prentice-Hall, Englewood Cliffs Ballentine LE (1990) Quantum mechanics. Prentice-Hall, Englewood Cliffs
Metadaten
Titel
The Potential Energy Surface in Molecular Quantum Mechanics
verfasst von
Brian Sutcliffe
R. Guy Woolley
Copyright-Jahr
2013
DOI
https://doi.org/10.1007/978-3-319-01529-3_1