Skip to main content

2024 | OriginalPaper | Buchkapitel

The Prediction Model of Water Level in Front of the Check Gate of the LSTM Neural Network Based on AIW-CLPSO

verfasst von : Linqing Gao, Dengzhe Ha, Litao Ma, Jiqiang Chen

Erschienen in: Parallel and Distributed Computing, Applications and Technologies

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The water level in front of the check gate of water transfer projects is affected by physical factors such as rainfall, terrain and hydraulic structures. Its fluctuation trend has strong non-linear and stochastic characteristics, and it is difficult to predict accurately and efficiently by hydrodynamic model. To solve the problem of predicting water level in front of check gate, a long short term memory (LSTM) neural network based on adaptive inertia weight comprehensive learning particle swarm optimization algorithm (AIW-CLPSO) is proposed. The AIW and CLPSO are adopted to improve the global optimization ability and convergence velocity of PSO in the proposed model. The model was applied to the water level prediction in front of the Chaohu Lake check gate. The example of the water level prediction in front of the Chaohu Lake check gate shows that the proposed model can obtain the optimal parameters of LSTM neural network, which overcomes the limitations of difficult parameter selection and inaccurate prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Qiu, X.P.: Neural Networks and Deep Learning. China Machine Press, Beijing (2020) Qiu, X.P.: Neural Networks and Deep Learning. China Machine Press, Beijing (2020)
2.
Zurück zum Zitat Yin, Z.K., Liao, W.H., Wang, R.J., Lei, X.H.: Rainfall-runoff modelling and forecasting based on long short-term memory (LSTM). South-to-North Water Transfers Water Sci. Technol. 17(6), 1–9 (2019) Yin, Z.K., Liao, W.H., Wang, R.J., Lei, X.H.: Rainfall-runoff modelling and forecasting based on long short-term memory (LSTM). South-to-North Water Transfers Water Sci. Technol. 17(6), 1–9 (2019)
3.
Zurück zum Zitat Hu, C.H., Wu, Q., Li, H., Jian, S.Q., Li, N., Lou, Z.Z.: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11), 1–16 (2018)CrossRef Hu, C.H., Wu, Q., Li, H., Jian, S.Q., Li, N., Lou, Z.Z.: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11), 1–16 (2018)CrossRef
4.
Zurück zum Zitat Zhang, D., Lindholm, G., Ratnaweera, H.: Use long short-term memory to enhance internet of things for combined sewer overflow monitoring. J. Hydrol. 556, 409–418 (2018)CrossRef Zhang, D., Lindholm, G., Ratnaweera, H.: Use long short-term memory to enhance internet of things for combined sewer overflow monitoring. J. Hydrol. 556, 409–418 (2018)CrossRef
5.
Zurück zum Zitat Xu, Y.H., et al.: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. J. Hydrol. 608, 127553 (2022)CrossRef Xu, Y.H., et al.: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. J. Hydrol. 608, 127553 (2022)CrossRef
6.
Zurück zum Zitat Du, B.G., Huang, S., Guo, J., Tang, H.T., Wang, L., Zhou, S.W.: Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks. Appl. Soft Comput. 122, 108875 (2022)CrossRef Du, B.G., Huang, S., Guo, J., Tang, H.T., Wang, L., Zhou, S.W.: Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks. Appl. Soft Comput. 122, 108875 (2022)CrossRef
7.
Zurück zum Zitat Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRef Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRef
8.
Zurück zum Zitat Kang, L.L., Dong, W.Y., Tian, J.S.: Opposition-based particle swarm optimization with adaptive Cauchy mutation. Comput. Sci. 42(10), 226–231 (2015) Kang, L.L., Dong, W.Y., Tian, J.S.: Opposition-based particle swarm optimization with adaptive Cauchy mutation. Comput. Sci. 42(10), 226–231 (2015)
9.
Zurück zum Zitat Ren, X.Q., Liu, S.L., Yu, X.D., Dong, X.: A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 234, 121236 (2021)CrossRef Ren, X.Q., Liu, S.L., Yu, X.D., Dong, X.: A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 234, 121236 (2021)CrossRef
Metadaten
Titel
The Prediction Model of Water Level in Front of the Check Gate of the LSTM Neural Network Based on AIW-CLPSO
verfasst von
Linqing Gao
Dengzhe Ha
Litao Ma
Jiqiang Chen
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8211-0_28

Premium Partner