Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2018

02.04.2018

The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

verfasst von: Shi Lei, Wen Jiu-Ba, Ren Chang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Schikorr, L. Donati, L. Tomesani, and A.E. Tekkaya, Microstructure Analysis of Aluminum Extrusion: Prediction of Microstructure on AA6060 Alloy, J. Mater. Process. Technol., 2008, 201, p 156–162CrossRef M. Schikorr, L. Donati, L. Tomesani, and A.E. Tekkaya, Microstructure Analysis of Aluminum Extrusion: Prediction of Microstructure on AA6060 Alloy, J. Mater. Process. Technol., 2008, 201, p 156–162CrossRef
2.
Zurück zum Zitat J.M.C. Mol, J. Van De Langkruis, J.H.W. De Wit, and S. Van Der Zwaag, An Integrated Study on the Effect of Pre- and Post-extrusion Heat Treatments and Surface Treatment on the Filiform Corrosion Properties of an Aluminium Extrusion Alloy, Corr. Sci., 2005, 47, p 2711–2730CrossRef J.M.C. Mol, J. Van De Langkruis, J.H.W. De Wit, and S. Van Der Zwaag, An Integrated Study on the Effect of Pre- and Post-extrusion Heat Treatments and Surface Treatment on the Filiform Corrosion Properties of an Aluminium Extrusion Alloy, Corr. Sci., 2005, 47, p 2711–2730CrossRef
3.
Zurück zum Zitat W.G. Jiang, G.C. Wang, S.Q. Lu, and J.W. Li, Prediction of Microstructure Evolution of Al–1% Mg Alloy During Hot Forming and Sequential Heat Treatment, J. Mater. Process. Technol., 2007, 182, p 274–280CrossRef W.G. Jiang, G.C. Wang, S.Q. Lu, and J.W. Li, Prediction of Microstructure Evolution of Al–1% Mg Alloy During Hot Forming and Sequential Heat Treatment, J. Mater. Process. Technol., 2007, 182, p 274–280CrossRef
4.
Zurück zum Zitat Y.C. Lin, L.T. Li, and Y.C. Xia, A new Method to Predict the Metadynamic Recrystallization Behavior in 2124 Aluminum Alloy, Comput. Mater. Sci., 2011, 50, p 2038–2043CrossRef Y.C. Lin, L.T. Li, and Y.C. Xia, A new Method to Predict the Metadynamic Recrystallization Behavior in 2124 Aluminum Alloy, Comput. Mater. Sci., 2011, 50, p 2038–2043CrossRef
5.
Zurück zum Zitat D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528, p 1937–1943CrossRef D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528, p 1937–1943CrossRef
6.
Zurück zum Zitat K. Wu, G.Q. Liu, B.F. Hu, F. Li, Y.W. Zhang, Y. Tao, and J.T. Liu, Hot Compressive Deformation Behavior of a New Hot Isostatically Pressed Ni-Cr-Co Based Powder Metallurgy Superalloy, Mater. Des., 2011, 32, p 1872–1879CrossRef K. Wu, G.Q. Liu, B.F. Hu, F. Li, Y.W. Zhang, Y. Tao, and J.T. Liu, Hot Compressive Deformation Behavior of a New Hot Isostatically Pressed Ni-Cr-Co Based Powder Metallurgy Superalloy, Mater. Des., 2011, 32, p 1872–1879CrossRef
7.
Zurück zum Zitat J. Cai, F.G. Li, T.Y.G. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–11518CrossRef J. Cai, F.G. Li, T.Y.G. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–11518CrossRef
8.
Zurück zum Zitat X.G. Fan, H. Yang, and P.F. Gao, Prediction of Constitutive Behavior and Microstructure Evolution in Hot Deformation of TA15 Titanium Alloy, Mater. Des., 2013, 51, p 34–42CrossRef X.G. Fan, H. Yang, and P.F. Gao, Prediction of Constitutive Behavior and Microstructure Evolution in Hot Deformation of TA15 Titanium Alloy, Mater. Des., 2013, 51, p 34–42CrossRef
9.
Zurück zum Zitat X.G. Fan, H. Yang, and P.F. Gao, Through-Process Macro–Micro Finite Element Modeling of Local Loading Forming of Large-Scale Complex Titanium Alloy Component for Microstructure Prediction, J. Mater. Process. Technol., 2014, 214, p 253–266CrossRef X.G. Fan, H. Yang, and P.F. Gao, Through-Process Macro–Micro Finite Element Modeling of Local Loading Forming of Large-Scale Complex Titanium Alloy Component for Microstructure Prediction, J. Mater. Process. Technol., 2014, 214, p 253–266CrossRef
10.
Zurück zum Zitat Q. Dua, W.J. Poolea, M.A. Wellsb, and N.C. Parsonc, Microstructure Evolution During Homogenization of Al-Mn-Fe-Si Alloys: Modeling and Experimental Results, Acta Mater., 2013, 61, p 4961–4973CrossRef Q. Dua, W.J. Poolea, M.A. Wellsb, and N.C. Parsonc, Microstructure Evolution During Homogenization of Al-Mn-Fe-Si Alloys: Modeling and Experimental Results, Acta Mater., 2013, 61, p 4961–4973CrossRef
11.
Zurück zum Zitat J.E. Spowart, Microstructural Characterization and Modeling of Discontinuously-Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2006, 425, p 225–237CrossRef J.E. Spowart, Microstructural Characterization and Modeling of Discontinuously-Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2006, 425, p 225–237CrossRef
12.
Zurück zum Zitat H. Ahmed, M.A. Wells, D.M. Maijer, B.J. Howes, and M.R. van der Winden, Modelling of Microstructure Evolution During Hot Rolling of AA5083 Using an Internal State Variable Approach Integrated into an FE Model, Mater. Sci. Eng., A, 2005, 390, p 278–290CrossRef H. Ahmed, M.A. Wells, D.M. Maijer, B.J. Howes, and M.R. van der Winden, Modelling of Microstructure Evolution During Hot Rolling of AA5083 Using an Internal State Variable Approach Integrated into an FE Model, Mater. Sci. Eng., A, 2005, 390, p 278–290CrossRef
13.
Zurück zum Zitat Q. Zhu, M.F. Abbod, J. Talamantes-Silva, C.M. Sellars, D.A. Linkens, and J.H. Beynon, Hybrid Modelling of Aluminium–Magnesium Alloys During Thermomechanical Processing in Terms of Physically-Based, Neuro-Fuzzy and Finite Element Models, Acta Mater., 2003, 51, p 5051–5062CrossRef Q. Zhu, M.F. Abbod, J. Talamantes-Silva, C.M. Sellars, D.A. Linkens, and J.H. Beynon, Hybrid Modelling of Aluminium–Magnesium Alloys During Thermomechanical Processing in Terms of Physically-Based, Neuro-Fuzzy and Finite Element Models, Acta Mater., 2003, 51, p 5051–5062CrossRef
14.
Zurück zum Zitat A. Simar, K.L. Nielsen, B. de Meester, V. Tvergaard, and T. Pardoen, Micro-Mechanical Modelling of Ductile Failure in 6005A Aluminium Using a Physics Based Strain Hardening Law Including Stage IV, Eng. Fract. Mech., 2010, 77, p 2491–2503CrossRef A. Simar, K.L. Nielsen, B. de Meester, V. Tvergaard, and T. Pardoen, Micro-Mechanical Modelling of Ductile Failure in 6005A Aluminium Using a Physics Based Strain Hardening Law Including Stage IV, Eng. Fract. Mech., 2010, 77, p 2491–2503CrossRef
15.
Zurück zum Zitat J.D. Clayton, Modeling Effects of Crystalline Microstructure, Energy Storage Mechanisms, and Residual Volume Changes on Penetration Resistance of Precipitate-Hardened Aluminum Alloys, Compos. B, 2009, 40, p 443–450CrossRef J.D. Clayton, Modeling Effects of Crystalline Microstructure, Energy Storage Mechanisms, and Residual Volume Changes on Penetration Resistance of Precipitate-Hardened Aluminum Alloys, Compos. B, 2009, 40, p 443–450CrossRef
16.
Zurück zum Zitat E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Grain Size Evolution During Discontinuous Dynamic Recrystallization, Scr. Mater., 2014, 72, p 1–4CrossRef E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Grain Size Evolution During Discontinuous Dynamic Recrystallization, Scr. Mater., 2014, 72, p 1–4CrossRef
17.
Zurück zum Zitat H. Li, C. Wu, and H. Yang, Crystal Plasticity Modeling of the Dynamic Recrystallization of Two-Phase Titanium Alloys During Isothermal Processing, Int. J. Plast, 2013, 51, p 271–291CrossRef H. Li, C. Wu, and H. Yang, Crystal Plasticity Modeling of the Dynamic Recrystallization of Two-Phase Titanium Alloys During Isothermal Processing, Int. J. Plast, 2013, 51, p 271–291CrossRef
18.
Zurück zum Zitat A.A. Brown and D.J. Bammann, Validation of a Model for Static and Dynamic Recrystallization in Metals, Int. J. Plast, 2012, 32–33, p 17–35CrossRef A.A. Brown and D.J. Bammann, Validation of a Model for Static and Dynamic Recrystallization in Metals, Int. J. Plast, 2012, 32–33, p 17–35CrossRef
19.
Zurück zum Zitat Y.Y. Zong, D.B. Shan, M. Xu, and Y. Lv, Flow Softening and Microstructural Evolution of TC11 Titanium Alloy During Hot Deformation, J. Mater. Process. Technol., 2009, 209, p 1988–1994CrossRef Y.Y. Zong, D.B. Shan, M. Xu, and Y. Lv, Flow Softening and Microstructural Evolution of TC11 Titanium Alloy During Hot Deformation, J. Mater. Process. Technol., 2009, 209, p 1988–1994CrossRef
20.
Zurück zum Zitat J. Luo, M.Q. Li, and D.W. Ma, The Deformation Behavior and Processing Maps in the Isothermal Compression of 7A09 Aluminum Alloy, Mater. Sci. Eng., A, 2012, 532, p 548–557CrossRef J. Luo, M.Q. Li, and D.W. Ma, The Deformation Behavior and Processing Maps in the Isothermal Compression of 7A09 Aluminum Alloy, Mater. Sci. Eng., A, 2012, 532, p 548–557CrossRef
21.
Zurück zum Zitat Y. Liu, R. Hu, T. Zhang, H. Kou, J. Wang, G. Yang, and J. Li, Dendritic Growth and Microstructure Evolution with Different Cooling Rates in Ti48Al2Cr2Nb Alloy, J. Mater. Eng. Perform., 2016, 25, p 38–45CrossRef Y. Liu, R. Hu, T. Zhang, H. Kou, J. Wang, G. Yang, and J. Li, Dendritic Growth and Microstructure Evolution with Different Cooling Rates in Ti48Al2Cr2Nb Alloy, J. Mater. Eng. Perform., 2016, 25, p 38–45CrossRef
22.
Zurück zum Zitat L. Shi, H. Yang, L.G. Guo, and J. Zhang, Constitutive Modeling of Deformation in High Temperature of a Forging 6005A Aluminum Alloy, Mater. Des., 2014, 54, p 576–581CrossRef L. Shi, H. Yang, L.G. Guo, and J. Zhang, Constitutive Modeling of Deformation in High Temperature of a Forging 6005A Aluminum Alloy, Mater. Des., 2014, 54, p 576–581CrossRef
23.
Zurück zum Zitat L. Donati, J.S. Dzwonczyk, J. Zhou, and L. Tomesani, Microstructure Prediction of HOT-DEFORMED ALUMINIUM ALLOYS, Key Eng. Mater., 2008, 367, p 107–116CrossRef L. Donati, J.S. Dzwonczyk, J. Zhou, and L. Tomesani, Microstructure Prediction of HOT-DEFORMED ALUMINIUM ALLOYS, Key Eng. Mater., 2008, 367, p 107–116CrossRef
24.
Zurück zum Zitat F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, Microstructural Modeling and Simulation for GCr15 Steel During Elevated Temperature Deformation, Mater. Des., 2014, 55, p 560–573CrossRef F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, Microstructural Modeling and Simulation for GCr15 Steel During Elevated Temperature Deformation, Mater. Des., 2014, 55, p 560–573CrossRef
25.
Zurück zum Zitat L. Shi, H. Yang, L. Guo, L. Dang, and J. Zhang, Large-Scale Manufacturing of Aluminum Alloy Plate Extruded from Subsize Billet by New Porthole-Equal Channel Angular Processing Technique, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1521–1530CrossRef L. Shi, H. Yang, L. Guo, L. Dang, and J. Zhang, Large-Scale Manufacturing of Aluminum Alloy Plate Extruded from Subsize Billet by New Porthole-Equal Channel Angular Processing Technique, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1521–1530CrossRef
26.
Zurück zum Zitat L. Shi, H. Li, W.Z. Jin, Z.Y. Min, G.H. Liao, and X.F. Wang, Portholes-Equal Channel Angular Pressing: Novel Technique for Extrusion of 6061 Aluminum Alloy Tube by Subsize Billet, Int. J. Adv. Manuf. Tech., 2016, 85, p 355–363CrossRef L. Shi, H. Li, W.Z. Jin, Z.Y. Min, G.H. Liao, and X.F. Wang, Portholes-Equal Channel Angular Pressing: Novel Technique for Extrusion of 6061 Aluminum Alloy Tube by Subsize Billet, Int. J. Adv. Manuf. Tech., 2016, 85, p 355–363CrossRef
27.
Zurück zum Zitat G. Fang, J. Zhou, and J. Duszczyk, Extrusion of 7075 Aluminium Alloy Through Double-Pocket Dies to Manufacture A Complex Profile, J. Mater. Process. Technol., 2009, 209, p 3050–3059CrossRef G. Fang, J. Zhou, and J. Duszczyk, Extrusion of 7075 Aluminium Alloy Through Double-Pocket Dies to Manufacture A Complex Profile, J. Mater. Process. Technol., 2009, 209, p 3050–3059CrossRef
28.
Zurück zum Zitat R. Sikand, A.M. Kumar, A.K. Sachdev, A.A. Luo, V. Jain, and A.K. Gupta, AM30 Porthole Die Extrusions—A Comparison with Circular Seamless Extruded Tubes, J. Mater. Process. Technol., 2009, 209, p 6010–6020CrossRef R. Sikand, A.M. Kumar, A.K. Sachdev, A.A. Luo, V. Jain, and A.K. Gupta, AM30 Porthole Die Extrusions—A Comparison with Circular Seamless Extruded Tubes, J. Mater. Process. Technol., 2009, 209, p 6010–6020CrossRef
29.
Zurück zum Zitat Y.W. Tham, M.W. Fu, H.H. Hng, M.S. Yong, and K.B. Lim, Bulk Nanostructured Processing of Aluminum Alloy, J. Mater. Process. Technol., 2007, 192–193, p 575–581CrossRef Y.W. Tham, M.W. Fu, H.H. Hng, M.S. Yong, and K.B. Lim, Bulk Nanostructured Processing of Aluminum Alloy, J. Mater. Process. Technol., 2007, 192–193, p 575–581CrossRef
Metadaten
Titel
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
verfasst von
Shi Lei
Wen Jiu-Ba
Ren Chang
Publikationsdatum
02.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3326-6

Weitere Artikel der Ausgabe 5/2018

Journal of Materials Engineering and Performance 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.