Skip to main content

2013 | OriginalPaper | Buchkapitel

4. The Real Gas Closed Cycles

verfasst von : Costante Mario Invernizzi

Erschienen in: Closed Power Cycles

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In practice, all the mechanical energy produced by thermal engines is generated via cycles that use steam (see Sect. 1.6) or combustion products (in gas-turbines and internal combustion engines).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For these types of cycle, point 1 at the start of compression may be positioned indifferently to the right of the upper limit curve (as in the case shown in the figure) or to the left of the lower limit curve.
 
2
A reactor with a nominal electrical power of 200  M W. Operative between 1963 and 1987. In 1969, the significant oxidisation of the mild steel in the steam generator by carbon dioxide forced them to reduce the maximum temperatures of the carbon dioxide to 360  ∘  C, reducing the useful power by about 20 %.
 
3
John Fox Jennens Malone, an Englishman, was born at Wallsend on Tyne in 1880 and died in 1959 at Newcastle upon Tyne. At eighteen years of age he entered the merchant navy and served for fourteen years. In the 1920s, he began to test heat engines with liquids as the working fluids and, in 1927, he completed a small water engine of 50 HP. Malone wrote in 1931 that “Trials by three different independent engineers gave 27 % indicated efficiency” [22] (a value that was two to three times greater than that of the steam engines used at the time on ships and locomotives). In 1932, Malone founded the Malone Instrument Co. Ltd, but his engine with liquid as its working fluid enjoyed no success, thanks also to the rapid growth of the high powered steam turbines and the internal combustion engines. In a letter of 1939, Malone gave vent to his bitterness: “there is one fact, a study of liquids as mediums in thermodynamics will teach an engineer more about the art of thermodynamics than all the universities on earth, or the memory men who infest them, and knowledge for knowledge’s sake is better than their parasitical life” [23].
 
Literatur
1.
Zurück zum Zitat Krasin AK, Nesterenko VB (1971) Dissociating gases: a new class of coolants and working substances for large power plants. Atom Energ Rev 9(1):177–194 Krasin AK, Nesterenko VB (1971) Dissociating gases: a new class of coolants and working substances for large power plants. Atom Energ Rev 9(1):177–194
2.
Zurück zum Zitat Angelino G (1979) Performance of N2O4 gas cycles for solar power applications. Proc Inst Mech Eng 193(1):313–320 Angelino G (1979) Performance of N2O4 gas cycles for solar power applications. Proc Inst Mech Eng 193(1):313–320
3.
Zurück zum Zitat Anonymous (1956) Calder Hall power Station. The Engineer, 5 October, pp 464–468 Anonymous (1956) Calder Hall power Station. The Engineer, 5 October, pp 464–468
4.
Zurück zum Zitat Feher EG (1967) The supercritical thermodynamic power cycle. In: Advances in energy conversion engineering. Intersociety energy conversion engineering conference, Miami Beach, FL, pp 37–44, 13–17 August Feher EG (1967) The supercritical thermodynamic power cycle. In: Advances in energy conversion engineering. Intersociety energy conversion engineering conference, Miami Beach, FL, pp 37–44, 13–17 August
5.
Zurück zum Zitat Angelino G (1967) Perspectives for the liquid phase compression gas turbine. J Eng Power Trans ASME 89(2):229–237CrossRef Angelino G (1967) Perspectives for the liquid phase compression gas turbine. J Eng Power Trans ASME 89(2):229–237CrossRef
6.
Zurück zum Zitat Angelino G (1967) Liquid-phase compression gas turbine for space power applications. J Spacecraft Rockets 4(2):188–194CrossRef Angelino G (1967) Liquid-phase compression gas turbine for space power applications. J Spacecraft Rockets 4(2):188–194CrossRef
7.
Zurück zum Zitat Angelino G (1968) Carbon dioxide condensation cycles for power production. J Eng Power Trans ASME 90(3):287–295CrossRef Angelino G (1968) Carbon dioxide condensation cycles for power production. J Eng Power Trans ASME 90(3):287–295CrossRef
8.
Zurück zum Zitat Angelino G (1971) Real gas effects in carbon dioxide cycles. Atomkernenergie (ATKE) 17(1):27–33 Angelino G (1971) Real gas effects in carbon dioxide cycles. Atomkernenergie (ATKE) 17(1):27–33
9.
Zurück zum Zitat Dostal V, Driscoll MJ, Hejzlar P, Wang Y (2004) Supercritical CO2 cycles for fast gas-cooled reactors. In: Proceedings of ASMETurbo Expo 2004. Power for land, sea, and air, Vienna, Austria, 14–17 June. Paper GT2004–54242 Dostal V, Driscoll MJ, Hejzlar P, Wang Y (2004) Supercritical CO2 cycles for fast gas-cooled reactors. In: Proceedings of ASMETurbo Expo 2004. Power for land, sea, and air, Vienna, Austria, 14–17 June. Paper GT2004–54242
10.
Zurück zum Zitat Hejzlar P, Pope MJ, Williams WC, Driscoll MJ (2005) Gas cooled fast reactor for generation IV service. Progr Nucl Energ 47(1–4):271–282CrossRef Hejzlar P, Pope MJ, Williams WC, Driscoll MJ (2005) Gas cooled fast reactor for generation IV service. Progr Nucl Energ 47(1–4):271–282CrossRef
11.
Zurück zum Zitat Dostal V, Hejzlar P, Driscoll MJ (2006) High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors. Nucl Tech 154:265–282 Dostal V, Hejzlar P, Driscoll MJ (2006) High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors. Nucl Tech 154:265–282
12.
Zurück zum Zitat Dostal V, Hejzlar P, Driscoll MJ (2006) The supercritical carbon dioxide power cycle: comparison to other advanced power cycles. Nucl Tech 154:283–301 Dostal V, Hejzlar P, Driscoll MJ (2006) The supercritical carbon dioxide power cycle: comparison to other advanced power cycles. Nucl Tech 154:283–301
13.
Zurück zum Zitat Lee JC, Campbell J Jr, Wright DE (1981) Closed-cycle gas turbine working fluids. J Eng Power Trans ASME 103:220–228CrossRef Lee JC, Campbell J Jr, Wright DE (1981) Closed-cycle gas turbine working fluids. J Eng Power Trans ASME 103:220–228CrossRef
14.
Zurück zum Zitat Angelino G, Invernizzi C (2001) Real gas Brayton cycles for organic working fluids. Proc IME J Power Energ 215(1):27–38CrossRef Angelino G, Invernizzi C (2001) Real gas Brayton cycles for organic working fluids. Proc IME J Power Energ 215(1):27–38CrossRef
15.
Zurück zum Zitat Lim JS, Park JY, Lee BG (2000) Vapor-Liquid Equilibria of CFC alternative refrigerant mixtures: trifluoromethane (HFC-23) + difluoromethane (HFC-32), trifluoromethane (HFC-23) + pentafluoroethane (HFC-125), and pentafluoroethane (HFC-125) + 1,1-difluoroethane (HFC-152a). Int J Thermophys 21(6):1339–1349CrossRef Lim JS, Park JY, Lee BG (2000) Vapor-Liquid Equilibria of CFC alternative refrigerant mixtures: trifluoromethane (HFC-23) + difluoromethane (HFC-32), trifluoromethane (HFC-23) + pentafluoroethane (HFC-125), and pentafluoroethane (HFC-125) + 1,1-difluoroethane (HFC-152a). Int J Thermophys 21(6):1339–1349CrossRef
16.
Zurück zum Zitat Invernizzi C M, van der Stelt T (2012) Supercritical and real gas Brayton cycles operating with mixtures of carbon dioxide and hydrocarbons. Proc IME J Power Energ 226(5):682–693CrossRef Invernizzi C M, van der Stelt T (2012) Supercritical and real gas Brayton cycles operating with mixtures of carbon dioxide and hydrocarbons. Proc IME J Power Energ 226(5):682–693CrossRef
17.
Zurück zum Zitat Nikitin K, Kato Y, Ngo L (2006) Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop. Int J Refrig 29:807–814CrossRef Nikitin K, Kato Y, Ngo L (2006) Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop. Int J Refrig 29:807–814CrossRef
18.
Zurück zum Zitat Min JK, Jeong JH, Ha MY, Kim KS (2009) High temperature heat exchanger studies for applications to gas turbines. Heat Mass Trans 46:175–186CrossRef Min JK, Jeong JH, Ha MY, Kim KS (2009) High temperature heat exchanger studies for applications to gas turbines. Heat Mass Trans 46:175–186CrossRef
19.
Zurück zum Zitat Angelino G, Invernizzi CM (2009) Carbon dioxide power cycles using liquid natural gas as heat sink. Appl Therm Eng 29:2935–2941CrossRef Angelino G, Invernizzi CM (2009) Carbon dioxide power cycles using liquid natural gas as heat sink. Appl Therm Eng 29:2935–2941CrossRef
20.
Zurück zum Zitat Angelino G, Invernizzi CM (2011) The role of real gas Brayton cycles for the use of liquid natural gas physical exergy. Appl Therm Eng 31:827–833CrossRef Angelino G, Invernizzi CM (2011) The role of real gas Brayton cycles for the use of liquid natural gas physical exergy. Appl Therm Eng 31:827–833CrossRef
21.
Zurück zum Zitat Organ A J (2007) The air engine. Stirling cycle power for a sustainable future. Woodhead Publishing Limited, CambridgeCrossRef Organ A J (2007) The air engine. Stirling cycle power for a sustainable future. Woodhead Publishing Limited, CambridgeCrossRef
22.
Zurück zum Zitat Anonymous (1993) John Malone and the invention of liquid-based engines. Los Alamos Sci 21:117 Anonymous (1993) John Malone and the invention of liquid-based engines. Los Alamos Sci 21:117
23.
Zurück zum Zitat Sier R (2007) John Fox Jennens Malone. The liquid Stirling engine. L A Mair, Chelmsford Sier R (2007) John Fox Jennens Malone. The liquid Stirling engine. L A Mair, Chelmsford
24.
Zurück zum Zitat Malone JFJ (1931) A new prime mover. J Roy Soc Arts 79(4099):679–709 Malone JFJ (1931) A new prime mover. J Roy Soc Arts 79(4099):679–709
25.
Zurück zum Zitat Allen PC, Knight WR, Paulson DN, Wheatley JC (1980) Principles of liquids working in heat engines. Proc Natl Acad Sci Unit States Am 77(1):39–43CrossRef Allen PC, Knight WR, Paulson DN, Wheatley JC (1980) Principles of liquids working in heat engines. Proc Natl Acad Sci Unit States Am 77(1):39–43CrossRef
26.
Zurück zum Zitat Swift GW (1989) A Stirling engine with a liquid working substance. J Appl Phys 65(11): 4157–4172CrossRef Swift GW (1989) A Stirling engine with a liquid working substance. J Appl Phys 65(11): 4157–4172CrossRef
27.
Zurück zum Zitat Parry WT, Bellows JC, Gallagher JS, Harvey AH (2000) ASME international steam tables for industrial use. CRTD-Vol. 58. ASME Press, New York, NY Parry WT, Bellows JC, Gallagher JS, Harvey AH (2000) ASME international steam tables for industrial use. CRTD-Vol. 58. ASME Press, New York, NY
Metadaten
Titel
The Real Gas Closed Cycles
verfasst von
Costante Mario Invernizzi
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5140-1_4