2016 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Arbeitstagung Bonn 2013
We extend the results of Emerton on the ordinary part functor to the category of the smooth representations over a general commutative ring R, of a general reductive p-adic group G (rational points of a reductive connected group over a local non-archimedean field F of residual characteristic p). In Emerton’s work, the characteristic of F is 0, R is a complete artinian local \(\mathbb{Z}_{p}\) -algebra having a finite residual field, and the representations are admissible. We show:
The smooth parabolic induction functor admits a right adjoint. The center-locally finite part of the smooth right adjoint is equal to the admissible right adjoint of the admissible parabolic induction functor when R is noetherian. The smooth and admissible parabolic induction functors are fully faithful when p is nilpotent in R.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
[Bu]
C.J. Bushnell, Representations of reductive
p-adic groups: localization of Hecke algebras and applications. J. Lond. Math. Soc.
63 (2), 364–386 (2001)
MathSciNetCrossRefMATH
[BT1]
F. Bruhat, J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées. Publ. Math. I.H.E.S.
41 (1972)
[Dat]
J.-F. Dat, Finitude pour les représentations lisses de groupes réductifs
p-adiques. J. Inst. Math. Jussieu
8 (1), 261–333 (2009)
MathSciNetCrossRef
[Emerton]
M. Emerton, Ordinary parts of admissible representations of
p-adic reductive groups I. Astérisque
331, 355–402 (2010)
MathSciNetMATH
[Emerton2]
M. Emerton, Ordinary parts of admissible representations of
p-adic reductive groups II. Astérisque
331, 403–459 (2010)
MathSciNetMATH
[HV]
G. Henniart, M.-F. Vigneras, Comparison of compact induction with parabolic induction. Special issue to the memory of J. Rogawski. Pac. J. Math.
260 (2), 457–495 (2012)
[KS]
M. Kashiwara, P. Schapira, Categories and sheaves.
Grundlehren des mathematischen Wissenschaften, vol. 332 (Springer, New York, 2006). Errata in
http://webusers.imj-prg.fr/~pierre.schapira,/books.
[Ly]
T. Ly, Irreducible representations modulo
p representations of
GL(
n,
D). Thesis. University of Paris 7, 2013
[Matsumura]
H. Matsumura,
Categories for the Working Mathematician (Springer, New York, 1971)
[ML]
L.S. Mac,
Categories for the Working Mathematician (Springer, New York, 1971)
MATH
[SVZ]
P. Schneider, M.-F. Vigneras, G. Zabradi, From étale
P
+-representations to
G-equivariant sheaves on
G∕
P (2012). Preprint
[SGA4]
A. Grothendieck, J.-L. Verdier, Préfaisceaux
Séminaire de géometrie algébrique by M. Artin, A. Grothendieck and J.-L. Verdier (1963–1964). Lecture Notes in Mathematics, vol. 269 (Springer, New York, 1972)
[VigLang]
M.-F. Vigneras, Représentations p-adiques de torsion admissibles.
Number Theory, Analysis and Geometry: In Memory of Serge Lang (Springer, New York, 2011)
[Viglivre]
M.-F. Vigneras, Représentations l-modulaires d’un groupe réductif p-adique avec
ℓ ≠
p.
Progress in Mathematics, vol. 131 (Birkhäuser, Boston, 1996)
- Titel
- The Right Adjoint of the Parabolic Induction
- DOI
- https://doi.org/10.1007/978-3-319-43648-7_15
- Autor:
-
Marie-France Vignéras
- Sequenznummer
- 15