Skip to main content
Erschienen in: Journal of Polymer Research 6/2019

01.06.2019 | ORIGINAL PAPER

The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene-oxide)/halloysite nanocomposites

verfasst von: Kuo Yang, Qianwen Chi, Xingyuan Wang, YinShan Jiang, Fangfei Li, Bing Xue

Erschienen in: Journal of Polymer Research | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Halloysite nanotubes were applied as an inorganic filler to prepare poly(ethylene-oxide)/halloysite (PEO/halloysite) nanocomposites for the purpose of increasing the ion conductivity of PEO matrix. The resulting PEO/halloysite nanocomposites were characterized by X-ray diffraction (XRD), Fourier Transfer infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), ion conductivity test, thermogravimetry analysis (TG) and mechanical properties test. SEM and TEM micrographs confirmed the good dispersion of halloysite nanotubes in PEO matrix. FTIR spectroscopy showed that the interaction between PEO and halloysite changed the ether oxygen vibrational modes of PEO. XRD and DSC results indicated that the PEO crystallinity gradually decreased with the increment of halloysite concentration. Meanwhile, the reduced PEO crystallinity promoted the improvement of ion conductivity and the maximum value (3.8 × 10−5 S/cm) appeared at a halloysite concentration of 20 wt%. The formation of amorphous region around halloysite is beneficial for the Li+ ion conduction. Furthermore, the tensile strength of PEO/halloysite nanocomposites was enhanced when halloysite was introduced into the polymer matrix with filler loading no more than 10 wt%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pandey K, Dwivedi MM, Singh M, Agrawal SL (2010) Studies of dielectric relaxation and a.c. conductivity in [(100−x)PEO + xNH4SCN]: Al-Zn ferrite nano composite polymer electrolyte. J Polym Res 17:127–133CrossRef Pandey K, Dwivedi MM, Singh M, Agrawal SL (2010) Studies of dielectric relaxation and a.c. conductivity in [(100−x)PEO + xNH4SCN]: Al-Zn ferrite nano composite polymer electrolyte. J Polym Res 17:127–133CrossRef
2.
Zurück zum Zitat Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO-PMMA) -LiBF4-EC plasticized solid polymer electrolyte films. J Polym Res 24:135–144CrossRef Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO-PMMA) -LiBF4-EC plasticized solid polymer electrolyte films. J Polym Res 24:135–144CrossRef
3.
Zurück zum Zitat Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118–5126CrossRef Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118–5126CrossRef
4.
Zurück zum Zitat Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO-PMMA blend based polymer nanocomposites. J Polym Res 25:116–140CrossRef Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO-PMMA blend based polymer nanocomposites. J Polym Res 25:116–140CrossRef
5.
Zurück zum Zitat Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 16:459–465CrossRef Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 16:459–465CrossRef
6.
Zurück zum Zitat Polu AR, Rhee H-W (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRef Polu AR, Rhee H-W (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRef
7.
Zurück zum Zitat Ibrahim S, Yasin SMM, Ng MN, Ahmad R, Johan MR (2011) Impedance spectroscopy of carbon nanotube/solid polymer electrolyte composites. Solid State Commun 151:1828–1832CrossRef Ibrahim S, Yasin SMM, Ng MN, Ahmad R, Johan MR (2011) Impedance spectroscopy of carbon nanotube/solid polymer electrolyte composites. Solid State Commun 151:1828–1832CrossRef
8.
Zurück zum Zitat Ibrahim S, Yasin SMM, Ng MN, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152:426–434CrossRef Ibrahim S, Yasin SMM, Ng MN, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152:426–434CrossRef
9.
Zurück zum Zitat Ounoughene G, Le Bihan O, Chivas-Joly C, Motzkus C, Longuet C, Debray B, Joubert A, Le Coq L, Lopez-Cuesta J-M (2015) Behavior and fate of halloysite nanotubes (HNTs) when incinerating PA6/HNTs nanocomposite. Environ Sci Technol 49:5450–5457CrossRef Ounoughene G, Le Bihan O, Chivas-Joly C, Motzkus C, Longuet C, Debray B, Joubert A, Le Coq L, Lopez-Cuesta J-M (2015) Behavior and fate of halloysite nanotubes (HNTs) when incinerating PA6/HNTs nanocomposite. Environ Sci Technol 49:5450–5457CrossRef
10.
Zurück zum Zitat Jang D, Zhang W, Choi H (2014) Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49:7309–7316CrossRef Jang D, Zhang W, Choi H (2014) Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49:7309–7316CrossRef
11.
Zurück zum Zitat Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L (2014) Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer 55:6519–6528CrossRef Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L (2014) Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer 55:6519–6528CrossRef
12.
Zurück zum Zitat Zhang JJ, Zang X, Wen HJ, Dong TT, Chai JC, Li Y, Chen BB, Zhao JW, Dong SM, Ma J (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5:4940–4948CrossRef Zhang JJ, Zang X, Wen HJ, Dong TT, Chai JC, Li Y, Chen BB, Zhao JW, Dong SM, Ma J (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5:4940–4948CrossRef
13.
Zurück zum Zitat Liu MX, Jia ZX, Jia DM, Zhou CR (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525CrossRef Liu MX, Jia ZX, Jia DM, Zhou CR (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525CrossRef
14.
Zurück zum Zitat Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582 Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582
15.
Zurück zum Zitat Singh B (1996) Why does halloysite roll? A new model. Clay Miner 44:191–196CrossRef Singh B (1996) Why does halloysite roll? A new model. Clay Miner 44:191–196CrossRef
16.
Zurück zum Zitat Frost RL, Shurvell HF (1997) Raman microprobe spectroscopy of halloysite. Clay Miner 45:68–72CrossRef Frost RL, Shurvell HF (1997) Raman microprobe spectroscopy of halloysite. Clay Miner 45:68–72CrossRef
17.
Zurück zum Zitat Yang S, Liu Z, Jiao Y, Liu Y, Ji C, Zhang Y (2014) New insight into PEO modified inner surface of HNTs and its nano-confinement within nanotube. J Mater Sci 49:4270–4278CrossRef Yang S, Liu Z, Jiao Y, Liu Y, Ji C, Zhang Y (2014) New insight into PEO modified inner surface of HNTs and its nano-confinement within nanotube. J Mater Sci 49:4270–4278CrossRef
18.
Zurück zum Zitat Zhen R, Chi QW, Wang XY, Yang K, Jiang Y, Li F, Xue B (2016) Crystallinity, ion conductivity, and thermal and mechanical properties of poly(ethylene oxide)–illite nanocomposites with exfoliated illite as a filler. J Appl Polym Sci 133:44226–44235CrossRef Zhen R, Chi QW, Wang XY, Yang K, Jiang Y, Li F, Xue B (2016) Crystallinity, ion conductivity, and thermal and mechanical properties of poly(ethylene oxide)–illite nanocomposites with exfoliated illite as a filler. J Appl Polym Sci 133:44226–44235CrossRef
19.
Zurück zum Zitat Bao JJ, Shi GJ, Tao C, Wang C, Zhu C, Cheng L, Qian G, Chen CH (2018) Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries. J Power Sources 389:84–92CrossRef Bao JJ, Shi GJ, Tao C, Wang C, Zhu C, Cheng L, Qian G, Chen CH (2018) Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries. J Power Sources 389:84–92CrossRef
20.
Zurück zum Zitat Liu YL, Wei WL, Hsu KY, Ho WH (2004) Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta 412:139–147CrossRef Liu YL, Wei WL, Hsu KY, Ho WH (2004) Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta 412:139–147CrossRef
21.
Zurück zum Zitat Wang AL, Liu X, Wang S, Chen J, Xu H, Xing Q, Zhang LY (2018) Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performance lithium-ion batteries. Electrochim Acta 276:184–193CrossRef Wang AL, Liu X, Wang S, Chen J, Xu H, Xing Q, Zhang LY (2018) Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performance lithium-ion batteries. Electrochim Acta 276:184–193CrossRef
22.
Zurück zum Zitat Lee JH, Lim JY, Park JT, Lee JM, Kim JH (2018) Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices. Mater Design 149:25–33CrossRef Lee JH, Lim JY, Park JT, Lee JM, Kim JH (2018) Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices. Mater Design 149:25–33CrossRef
23.
Zurück zum Zitat Zhang YG, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385CrossRef Zhang YG, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385CrossRef
24.
Zurück zum Zitat Dhakal HN, Zhang ZY, Richardson MOW (2006) Nanoindentation behaviour of layered silicate reinforced unsaturated polyester nanocomposites. Polym Test 25:846–852CrossRef Dhakal HN, Zhang ZY, Richardson MOW (2006) Nanoindentation behaviour of layered silicate reinforced unsaturated polyester nanocomposites. Polym Test 25:846–852CrossRef
25.
Zurück zum Zitat Tan W, Salehabadi A, Mohd Isa M, Abu Bakar M, Abu Bakar N (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132CrossRef Tan W, Salehabadi A, Mohd Isa M, Abu Bakar M, Abu Bakar N (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132CrossRef
26.
Zurück zum Zitat Chang PR, Xie Y, Wu D, Ma X (2011) Amylose wrapped halloysite nanotubes. Carbohydr Polym 84:1426–1429CrossRef Chang PR, Xie Y, Wu D, Ma X (2011) Amylose wrapped halloysite nanotubes. Carbohydr Polym 84:1426–1429CrossRef
27.
Zurück zum Zitat Zhang H, Li CM, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou ZB (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815CrossRef Zhang H, Li CM, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou ZB (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815CrossRef
28.
Zurück zum Zitat Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526CrossRef Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526CrossRef
29.
Zurück zum Zitat Bocchini S, Fukushima K, Blasio AD, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11:2919–2926CrossRef Bocchini S, Fukushima K, Blasio AD, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11:2919–2926CrossRef
30.
Zurück zum Zitat Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10CrossRef Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10CrossRef
31.
Zurück zum Zitat Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Poly(ethylene oxide)/clay nanocomposite: thermomechanical properties and morphology. Polymer 47:4068–4074CrossRef Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Poly(ethylene oxide)/clay nanocomposite: thermomechanical properties and morphology. Polymer 47:4068–4074CrossRef
32.
Zurück zum Zitat Reddy MJ, Chu PP, Rao UVS (2006) Study of multiple interactions in mesoporous composite PEO electrolytes. J Power Sources 158:614–619CrossRef Reddy MJ, Chu PP, Rao UVS (2006) Study of multiple interactions in mesoporous composite PEO electrolytes. J Power Sources 158:614–619CrossRef
33.
Zurück zum Zitat Burgaz E, Yazici M, Kapusuz M, Alisir SH, Ozcan H (2014) Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim Acta 575:159–166CrossRef Burgaz E, Yazici M, Kapusuz M, Alisir SH, Ozcan H (2014) Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim Acta 575:159–166CrossRef
34.
Zurück zum Zitat Wunderlich B, Macromolecular physics, Academic Press (1980) . New York pp 363–369 Wunderlich B, Macromolecular physics, Academic Press (1980) . New York pp 363–369
35.
Zurück zum Zitat Chen H-W, Chang F-C (2011) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769CrossRef Chen H-W, Chang F-C (2011) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769CrossRef
36.
Zurück zum Zitat Fan LZ, Nan C-W, Li M (2003) Thermal, electrical and mechanical properties of (PEO)16LiClO4 electrolytes with modified montmorillonites. Chem Phys Lett 369:698–702CrossRef Fan LZ, Nan C-W, Li M (2003) Thermal, electrical and mechanical properties of (PEO)16LiClO4 electrolytes with modified montmorillonites. Chem Phys Lett 369:698–702CrossRef
37.
Zurück zum Zitat Nan C-W, Fan LZ, Lin YH, Cai Q (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104CrossRef Nan C-W, Fan LZ, Lin YH, Cai Q (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104CrossRef
38.
Zurück zum Zitat Karan S, Sahu M, Sahu TB, Mahipal YK, Sahu DK, Agrawal RC (2017) Investigations on materials and ion transport properties of Zn2+ conducting nano-composite polymer electrolytes (NCPEs): [(90 PEO: 10 Zn(CF3SO3)2)+x ZnO]. Mater Today Commun 13:269–274CrossRef Karan S, Sahu M, Sahu TB, Mahipal YK, Sahu DK, Agrawal RC (2017) Investigations on materials and ion transport properties of Zn2+ conducting nano-composite polymer electrolytes (NCPEs): [(90 PEO: 10 Zn(CF3SO3)2)+x ZnO]. Mater Today Commun 13:269–274CrossRef
39.
Zurück zum Zitat Gurusiddappa J, Madhuri M, Suvarna RP, Dasan KP (2016) Studies on the morphology and conductivity of PEO/LiClO4. Mater Today P 3:1451–1459CrossRef Gurusiddappa J, Madhuri M, Suvarna RP, Dasan KP (2016) Studies on the morphology and conductivity of PEO/LiClO4. Mater Today P 3:1451–1459CrossRef
40.
Zurück zum Zitat Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRef Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRef
41.
Zurück zum Zitat Jia ZX, Luo YF, Guo BC, Yang BT, Du ML, Jia DM (2009) Reinforcing and flame-retardant effects of Halloysite nanotubes on LLDPE. Polym -Plast Technol 48:607–613CrossRef Jia ZX, Luo YF, Guo BC, Yang BT, Du ML, Jia DM (2009) Reinforcing and flame-retardant effects of Halloysite nanotubes on LLDPE. Polym -Plast Technol 48:607–613CrossRef
42.
Zurück zum Zitat Sonker RK, Rahul SSR (2018) ZnO nanoneedle structure based dye-sensitized solar cell utilizing solid polymer electrolyte. Mater Lett 223:133–136CrossRef Sonker RK, Rahul SSR (2018) ZnO nanoneedle structure based dye-sensitized solar cell utilizing solid polymer electrolyte. Mater Lett 223:133–136CrossRef
43.
Zurück zum Zitat Xue B, Zhang PP, Jiang YS, Sun MM, Liu DR, Yu LX (2011) Preparation and characterization of linear low-density polyethylene/dickite nanocomposites prepared by the direct melt blending of linear low-density polyethylene with exfoliated dickite. J Appl Polym Sci 120:1736–1743CrossRef Xue B, Zhang PP, Jiang YS, Sun MM, Liu DR, Yu LX (2011) Preparation and characterization of linear low-density polyethylene/dickite nanocomposites prepared by the direct melt blending of linear low-density polyethylene with exfoliated dickite. J Appl Polym Sci 120:1736–1743CrossRef
44.
Zurück zum Zitat Xue B, Jiang YS, Li GD (2013) Preparation of cu/Dickite/LLDPE nanocomposites and synergistic effect of exfoliated dickite and nano-cu in LLDPE matrix. Polym Compos 34:1061–1070CrossRef Xue B, Jiang YS, Li GD (2013) Preparation of cu/Dickite/LLDPE nanocomposites and synergistic effect of exfoliated dickite and nano-cu in LLDPE matrix. Polym Compos 34:1061–1070CrossRef
45.
Zurück zum Zitat Wu W, Cao XW, Zhang YJ, He GJ (2013) Polylactide/halloysite nanotube nanocomposites: thermal, mechanical properties, and foam processing. J Appl Polym Sci 130:443–452CrossRef Wu W, Cao XW, Zhang YJ, He GJ (2013) Polylactide/halloysite nanotube nanocomposites: thermal, mechanical properties, and foam processing. J Appl Polym Sci 130:443–452CrossRef
46.
Zurück zum Zitat Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef
47.
Zurück zum Zitat Zhang ZJ, Zhang LN, Li Y, Xu HD (2005) New fabricate of styrene–butadiene rubber/montmorillonite nanocomposites by anionic polymerization. Polymer 46:129–136CrossRef Zhang ZJ, Zhang LN, Li Y, Xu HD (2005) New fabricate of styrene–butadiene rubber/montmorillonite nanocomposites by anionic polymerization. Polymer 46:129–136CrossRef
48.
Zurück zum Zitat Ye YP, Chen HB, Wu JS, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433CrossRef Ye YP, Chen HB, Wu JS, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433CrossRef
Metadaten
Titel
The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene-oxide)/halloysite nanocomposites
verfasst von
Kuo Yang
Qianwen Chi
Xingyuan Wang
YinShan Jiang
Fangfei Li
Bing Xue
Publikationsdatum
01.06.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 6/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1803-8

Weitere Artikel der Ausgabe 6/2019

Journal of Polymer Research 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.