Skip to main content
Erschienen in: Experimental Mechanics 3/2016

23.10.2015

The Role of Surface Structure in Normal Contact Stiffness

verfasst von: C. Zhai, Y. Gan, D. Hanaor, G. Proust, D. Retraint

Erschienen in: Experimental Mechanics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of roughness and fractality on the normal contact stiffness of rough surfaces were investigated by considering samples of isotropically roughened aluminium. Surface features of samples were altered by polishing and by five surface mechanical treatments using different sized particles. Surface topology was characterised by interferometry-based profilometry and electron microscopy. Subsequently, the normal contact stiffness was evaluated through flat-tipped diamond nanoindentation tests employing the partial unloading method to isolate elastic deformation. Three indenter tips of various sizes were utilised in order to gain results across a wide range of stress levels. We focus on establishing relationships between interfacial stiffness and roughness descriptors, combined with the effects of the fractal dimension of surfaces over various length scales. The experimental results show that the observed contact stiffness is a power-law function of the normal force with the exponent of this relationship closely correlated to surfaces’ values of fractal dimension, yielding corresponding correlation coefficients above 90 %. A relatively weak correlation coefficient of 60 % was found between the exponent and surfaces’ RMS roughness values. The RMS roughness mainly contributes to the magnitude of the contact stiffness, when surfaces have similar fractal structures at a given loading, with a correlation coefficient of −95 %. These findings from this work can be served as the experimental basis for modelling contact stiffness on various rough surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Popov VL (2010) Contact mechanics and friction. Springer Science & Business Media, BerlinCrossRefMATH Popov VL (2010) Contact mechanics and friction. Springer Science & Business Media, BerlinCrossRefMATH
2.
Zurück zum Zitat Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61(4):201–227CrossRef Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61(4):201–227CrossRef
3.
Zurück zum Zitat Assender H, Bliznyuk V, Porfyrakis K (2002) How surface topography relates to materials’ properties. Science 297(5583):973–976CrossRef Assender H, Bliznyuk V, Porfyrakis K (2002) How surface topography relates to materials’ properties. Science 297(5583):973–976CrossRef
4.
Zurück zum Zitat Archard J (1957) Elastic deformation and the laws of friction. Proc R Soc Lond Ser A Math Phys Sci 243(1233):190–205CrossRef Archard J (1957) Elastic deformation and the laws of friction. Proc R Soc Lond Ser A Math Phys Sci 243(1233):190–205CrossRef
5.
Zurück zum Zitat Greenwood J, Williamson J (1966) Contact of nominally flat surfaces. Proc R Soc Lond Ser A Math Phys Sci 295(1442):300–319CrossRef Greenwood J, Williamson J (1966) Contact of nominally flat surfaces. Proc R Soc Lond Ser A Math Phys Sci 295(1442):300–319CrossRef
6.
Zurück zum Zitat Brake M (2012) An analytical elastic-perfectly plastic contact model. Int J Solids Struct 49(22):3129–3141CrossRef Brake M (2012) An analytical elastic-perfectly plastic contact model. Int J Solids Struct 49(22):3129–3141CrossRef
7.
Zurück zum Zitat Komvopoulos K, Ye N (2001) Three-dimensional contact analysis of elastic–plastic layered media with fractal surface topographies. J Tribol 123(3):632–640CrossRef Komvopoulos K, Ye N (2001) Three-dimensional contact analysis of elastic–plastic layered media with fractal surface topographies. J Tribol 123(3):632–640CrossRef
8.
Zurück zum Zitat Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457(7233):1116–1119CrossRef Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457(7233):1116–1119CrossRef
10.
Zurück zum Zitat Akarapu S, Sharp T, Robbins MO (2011) Stiffness of contacts between rough surfaces. Phys Rev Lett 106(20):204301CrossRef Akarapu S, Sharp T, Robbins MO (2011) Stiffness of contacts between rough surfaces. Phys Rev Lett 106(20):204301CrossRef
11.
Zurück zum Zitat Almqvist A, Campaná C, Prodanov N, Persson B (2011) Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J Mech Phys Solids 59(11):2355–2369CrossRefMathSciNetMATH Almqvist A, Campaná C, Prodanov N, Persson B (2011) Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J Mech Phys Solids 59(11):2355–2369CrossRefMathSciNetMATH
12.
Zurück zum Zitat Hyun S, Robbins MO (2007) Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol Int 40(10):1413–1422CrossRef Hyun S, Robbins MO (2007) Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol Int 40(10):1413–1422CrossRef
13.
Zurück zum Zitat Pohrt R, Popov VL, Filippov AE (2012) Normal contact stiffness of elastic solids with fractal rough surfaces for one-and three-dimensional systems. Phys Rev E 86(2):026710CrossRef Pohrt R, Popov VL, Filippov AE (2012) Normal contact stiffness of elastic solids with fractal rough surfaces for one-and three-dimensional systems. Phys Rev E 86(2):026710CrossRef
14.
Zurück zum Zitat Carbone G, Bottiglione F (2008) Asperity contact theories: do they predict linearity between contact area and load? J Mech Phys Solids 56(8):2555–2572CrossRefMATH Carbone G, Bottiglione F (2008) Asperity contact theories: do they predict linearity between contact area and load? J Mech Phys Solids 56(8):2555–2572CrossRefMATH
15.
Zurück zum Zitat Kogut L, Komvopoulos K (2003) Electrical contact resistance theory for conductive rough surfaces. J Appl Phys 94(5):3153–3162CrossRef Kogut L, Komvopoulos K (2003) Electrical contact resistance theory for conductive rough surfaces. J Appl Phys 94(5):3153–3162CrossRef
17.
Zurück zum Zitat Campana C, Persson B, Müser M (2011) Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J Phys Condens Matter 23(8):085001CrossRef Campana C, Persson B, Müser M (2011) Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J Phys Condens Matter 23(8):085001CrossRef
18.
Zurück zum Zitat Pohrt R, Popov VL (2013) Contact stiffness of randomly rough surfaces. Sci Rep 3:3293CrossRef Pohrt R, Popov VL (2013) Contact stiffness of randomly rough surfaces. Sci Rep 3:3293CrossRef
19.
Zurück zum Zitat Pohrt R, Popov VL (2012) Normal contact stiffness of elastic solids with fractal rough surfaces. Phys Rev Lett 108(10):104301CrossRef Pohrt R, Popov VL (2012) Normal contact stiffness of elastic solids with fractal rough surfaces. Phys Rev Lett 108(10):104301CrossRef
20.
Zurück zum Zitat Yan W, Komvopoulos K (1998) Contact analysis of elastic–plastic fractal surfaces. J Appl Phys 84(7):3617–3624CrossRef Yan W, Komvopoulos K (1998) Contact analysis of elastic–plastic fractal surfaces. J Appl Phys 84(7):3617–3624CrossRef
21.
Zurück zum Zitat Jiang S, Zheng Y, Zhu H (2010) A contact stiffness model of machined plane joint based on fractal theory. J Tribol 132(1):011401CrossRef Jiang S, Zheng Y, Zhu H (2010) A contact stiffness model of machined plane joint based on fractal theory. J Tribol 132(1):011401CrossRef
22.
Zurück zum Zitat Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2003) The contact mechanics of fractal surfaces. Nat Mater 2(4):233–236CrossRef Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2003) The contact mechanics of fractal surfaces. Nat Mater 2(4):233–236CrossRef
23.
Zurück zum Zitat Stifter T, Marti O, Bhushan B (2000) Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys Rev B 62(20):13667CrossRef Stifter T, Marti O, Bhushan B (2000) Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys Rev B 62(20):13667CrossRef
24.
Zurück zum Zitat Putman CA, Igarashi M, Kaneko R (1995) Single‐asperity friction in friction force microscopy: the composite‐tip model. Appl Phys Lett 66(23):3221–3223CrossRef Putman CA, Igarashi M, Kaneko R (1995) Single‐asperity friction in friction force microscopy: the composite‐tip model. Appl Phys Lett 66(23):3221–3223CrossRef
25.
Zurück zum Zitat Mulvihill D, Brunskill H, Kartal M, Dwyer-Joyce R, Nowell D (2013) A comparison of contact stiffness measurements obtained by the digital image correlation and ultrasound techniques. Exp Mech 53(7):1245–1263CrossRef Mulvihill D, Brunskill H, Kartal M, Dwyer-Joyce R, Nowell D (2013) A comparison of contact stiffness measurements obtained by the digital image correlation and ultrasound techniques. Exp Mech 53(7):1245–1263CrossRef
26.
Zurück zum Zitat Lorenz B, Persson B (2009) Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. J Phys Condens Matter 21(1):015003CrossRef Lorenz B, Persson B (2009) Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. J Phys Condens Matter 21(1):015003CrossRef
27.
Zurück zum Zitat Hanaor D, Einav I, Gan Y (2013) Effects of surface structure deformation on static friction at fractal interfaces. Géotech Lett 3(2):52–58CrossRef Hanaor D, Einav I, Gan Y (2013) Effects of surface structure deformation on static friction at fractal interfaces. Géotech Lett 3(2):52–58CrossRef
28.
Zurück zum Zitat Chandrasekar S, Eriten M, Polycarpou A (2013) An improved model of asperity interaction in normal contact of rough surfaces. J Appl Mech 80(1):011025CrossRef Chandrasekar S, Eriten M, Polycarpou A (2013) An improved model of asperity interaction in normal contact of rough surfaces. J Appl Mech 80(1):011025CrossRef
29.
Zurück zum Zitat Hanaor DA, Gan Y, Einav I (2015) Contact mechanics of fractal surfaces by spline assisted discretisation. Int J Solids Struct 59:121–131CrossRef Hanaor DA, Gan Y, Einav I (2015) Contact mechanics of fractal surfaces by spline assisted discretisation. Int J Solids Struct 59:121–131CrossRef
30.
Zurück zum Zitat Shankar S, Mayuram M (2008) Effect of strain hardening in elastic–plastic transition behavior in a hemisphere in contact with a rigid flat. Int J Solids Struct 45(10):3009–3020CrossRefMATH Shankar S, Mayuram M (2008) Effect of strain hardening in elastic–plastic transition behavior in a hemisphere in contact with a rigid flat. Int J Solids Struct 45(10):3009–3020CrossRefMATH
31.
Zurück zum Zitat Daphalapurkar N, Wang F, Fu B, Lu H, Komanduri R (2011) Determination of mechanical properties of sand grains by nanoindentation. Exp Mech 51(5):719–728CrossRef Daphalapurkar N, Wang F, Fu B, Lu H, Komanduri R (2011) Determination of mechanical properties of sand grains by nanoindentation. Exp Mech 51(5):719–728CrossRef
32.
Zurück zum Zitat Ladani L, Harvey E, Choudhury S, Taylor C (2013) Effect of varying test parameters on elastic–plastic properties extracted by nanoindentation tests. Exp Mech 53(8):1299–1309CrossRef Ladani L, Harvey E, Choudhury S, Taylor C (2013) Effect of varying test parameters on elastic–plastic properties extracted by nanoindentation tests. Exp Mech 53(8):1299–1309CrossRef
33.
Zurück zum Zitat Persson B, Albohr O, Tartaglino U, Volokitin A, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17(1):R1CrossRef Persson B, Albohr O, Tartaglino U, Volokitin A, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17(1):R1CrossRef
34.
Zurück zum Zitat Thomas T (1998) Trends in surface roughness. Int J Mach Tools Manuf 38(5):405–411CrossRef Thomas T (1998) Trends in surface roughness. Int J Mach Tools Manuf 38(5):405–411CrossRef
35.
Zurück zum Zitat Go J-Y, Pyun S-I (2006) Fractal approach to rough surfaces and interfaces in electrochemistry. Modern Aspects of Electrochemistry. Springer, US, pp 167–229 Go J-Y, Pyun S-I (2006) Fractal approach to rough surfaces and interfaces in electrochemistry. Modern Aspects of Electrochemistry. Springer, US, pp 167–229
36.
Zurück zum Zitat Ciavarella M, Demelio G, Barber J, Jang YH (2000) Linear elastic contact of the Weierstrass profile. Proc R Soc Lond Ser A Math Phys Sci 456(1994):387–405CrossRefMathSciNetMATH Ciavarella M, Demelio G, Barber J, Jang YH (2000) Linear elastic contact of the Weierstrass profile. Proc R Soc Lond Ser A Math Phys Sci 456(1994):387–405CrossRefMathSciNetMATH
37.
Zurück zum Zitat Dubuc B, Zucker S, Tricot C, Quiniou J, Wehbi D (1989) Evaluating the fractal dimension of surfaces. Proc R Soc Lond Ser A Math Phys Sci 425(1868):113–127CrossRefMathSciNetMATH Dubuc B, Zucker S, Tricot C, Quiniou J, Wehbi D (1989) Evaluating the fractal dimension of surfaces. Proc R Soc Lond Ser A Math Phys Sci 425(1868):113–127CrossRefMathSciNetMATH
38.
Zurück zum Zitat De Santis A, Fedi M, Quarta T (1997) A revisitation of the triangular prism surface area method for estimating the fractal dimension of fractal surfaces. Ann Geophys 40(4):811–821 De Santis A, Fedi M, Quarta T (1997) A revisitation of the triangular prism surface area method for estimating the fractal dimension of fractal surfaces. Ann Geophys 40(4):811–821
39.
Zurück zum Zitat Lu K, Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A 375:38–45CrossRef Lu K, Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A 375:38–45CrossRef
40.
Zurück zum Zitat Roland T, Retraint D, Lu K, Lu J (2007) Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater Sci Eng A 445:281–288CrossRef Roland T, Retraint D, Lu K, Lu J (2007) Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater Sci Eng A 445:281–288CrossRef
41.
Zurück zum Zitat Proust G, Retraint D, Chemkhi M, Roos A, Demangel C (2015) Electron backscatter diffraction and transmission Kikuchi diffraction analysis of an austenitic stainless steel subjected to surface mechanical attrition treatment and plasma nitriding. Microsc Microanal 21(04):919–926CrossRef Proust G, Retraint D, Chemkhi M, Roos A, Demangel C (2015) Electron backscatter diffraction and transmission Kikuchi diffraction analysis of an austenitic stainless steel subjected to surface mechanical attrition treatment and plasma nitriding. Microsc Microanal 21(04):919–926CrossRef
42.
Zurück zum Zitat Liu Y, Jin B, Lu J (2015) Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater Sci Eng A 636:446–451CrossRef Liu Y, Jin B, Lu J (2015) Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater Sci Eng A 636:446–451CrossRef
43.
Zurück zum Zitat Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:5961CrossRef Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:5961CrossRef
44.
Zurück zum Zitat Douketis C, Wang Z, Haslett TL, Moskovits M (1995) Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys Rev B 51(16):11022CrossRef Douketis C, Wang Z, Haslett TL, Moskovits M (1995) Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys Rev B 51(16):11022CrossRef
45.
Zurück zum Zitat Zahn W, Zösch A (1999) The dependence of fractal dimension on measuring conditions of scanning probe microscopy. Fresenius J Anal Chem 365(1–3):168–172CrossRef Zahn W, Zösch A (1999) The dependence of fractal dimension on measuring conditions of scanning probe microscopy. Fresenius J Anal Chem 365(1–3):168–172CrossRef
46.
Zurück zum Zitat Kim J-Y, Baltazar A, Rokhlin S (2004) Ultrasonic assessment of rough surface contact between solids from elastoplastic loading–unloading hysteresis cycle. J Mech Phys Solids 52(8):1911–1934CrossRef Kim J-Y, Baltazar A, Rokhlin S (2004) Ultrasonic assessment of rough surface contact between solids from elastoplastic loading–unloading hysteresis cycle. J Mech Phys Solids 52(8):1911–1934CrossRef
47.
Zurück zum Zitat Pei L, Hyun S, Molinari J, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53(11):2385–2409CrossRefMATH Pei L, Hyun S, Molinari J, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53(11):2385–2409CrossRefMATH
48.
Zurück zum Zitat Kadin Y, Kligerman Y, Etsion I (2006) Unloading an elastic–plastic contact of rough surfaces. J Mech Phys Solids 54(12):2652–2674CrossRef Kadin Y, Kligerman Y, Etsion I (2006) Unloading an elastic–plastic contact of rough surfaces. J Mech Phys Solids 54(12):2652–2674CrossRef
49.
Zurück zum Zitat Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583CrossRef
50.
Zurück zum Zitat Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20CrossRef Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20CrossRef
51.
Zurück zum Zitat Etsion I, Kligerman Y, Kadin Y (2005) Unloading of an elastic–plastic loaded spherical contact. Int J Solids Struct 42(13):3716–3729CrossRefMATH Etsion I, Kligerman Y, Kadin Y (2005) Unloading of an elastic–plastic loaded spherical contact. Int J Solids Struct 42(13):3716–3729CrossRefMATH
52.
Zurück zum Zitat Cheng C-M, Cheng Y-T (1997) On the initial unloading slope in indentation of elastic–plastic solids by an indenter with an axisymmetric smooth profile. Appl Phys Lett 71(18):2623–2625CrossRef Cheng C-M, Cheng Y-T (1997) On the initial unloading slope in indentation of elastic–plastic solids by an indenter with an axisymmetric smooth profile. Appl Phys Lett 71(18):2623–2625CrossRef
53.
Zurück zum Zitat Bolshakov A, Pharr G (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13(04):1049–1058CrossRef Bolshakov A, Pharr G (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13(04):1049–1058CrossRef
54.
Zurück zum Zitat Restagno F, Crassous J, Cottin-Bizonne C, Charlaix E (2002) Adhesion between weakly rough beads. Phys Rev E 65(4):042301CrossRef Restagno F, Crassous J, Cottin-Bizonne C, Charlaix E (2002) Adhesion between weakly rough beads. Phys Rev E 65(4):042301CrossRef
55.
Zurück zum Zitat Kim J, Ryba E (2001) The effect of polyol OH number on the bond strength of rigid polyurethane on an aluminum substrate. J Adhes Sci Technol 15(14):1747–1762CrossRef Kim J, Ryba E (2001) The effect of polyol OH number on the bond strength of rigid polyurethane on an aluminum substrate. J Adhes Sci Technol 15(14):1747–1762CrossRef
56.
Zurück zum Zitat Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159CrossRef Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159CrossRef
57.
Zurück zum Zitat Oh H-J, Jang K-W, Chi C-S (1999) Impedance characteristics of oxide layers on aluminium. Bull Kor Chem Soc 20(11):1341 Oh H-J, Jang K-W, Chi C-S (1999) Impedance characteristics of oxide layers on aluminium. Bull Kor Chem Soc 20(11):1341
58.
Zurück zum Zitat Campbell T, Kalia RK, Nakano A, Vashishta P, Ogata S, Rodgers S (1999) Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Phys Rev Lett 82(24):4866CrossRef Campbell T, Kalia RK, Nakano A, Vashishta P, Ogata S, Rodgers S (1999) Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Phys Rev Lett 82(24):4866CrossRef
59.
Zurück zum Zitat Putignano C, Afferrante L, Carbone G, Demelio G (2012) The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J Mech Phys Solids 60(5):973–982CrossRef Putignano C, Afferrante L, Carbone G, Demelio G (2012) The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J Mech Phys Solids 60(5):973–982CrossRef
Metadaten
Titel
The Role of Surface Structure in Normal Contact Stiffness
verfasst von
C. Zhai
Y. Gan
D. Hanaor
G. Proust
D. Retraint
Publikationsdatum
23.10.2015
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 3/2016
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-0107-0

Weitere Artikel der Ausgabe 3/2016

Experimental Mechanics 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.