Skip to main content

23.12.2024 | Original Article

The simulation of spatio-temporal neural field equations with delay depending on the position of neural fibers using the Galerkin method based on moving least squares

verfasst von: Alireza Hosseinian, Pouria Assari, Mehdi Dehghan

Erschienen in: Engineering with Computers

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most significant domains in neurodynamics revolves around models founded on neural field equations (NFEs), commonly referred to as Amari’s equations. These equations intricately depict neural activity within individual neural fields and networks of such fields. The current study investigates a numerical approach to solve the time-spatio Hammerstein integro-differential equations including space-dependent delay on 2D irregular domains derived from NFEs. The presented scheme utilizes a modified discrete Galerkin technique, involving the moving least squares (MLS) approximation. This method starts by discretizing the temporal direction using the MLS method and proceeds to obtain the solution within the domain space employing the MLS scheme. The MLS method incorporates locally weighted functions into its framework and utilizes scattered data, eliminating the need for a background mesh, and is known as a meshless method. The offered method not only achieves high accuracy in approximation but also offers a simple algorithm, inheriting the advantageous features of the MLS technique such as, independence from the geometry of the domain. Furthermore, the error bound and the convergence rate of the proposed scheme have been estimated. The effectiveness of the approach is further verified through various numerical simulations, illustrating its performance and consistency with the theoretical expectations derived.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alswaihli J, Potthast R, Bojak I, Saddy D, Hutt A (2018) Kernel reconstruction for delayed neural field equations. J Math Neurosci 8:1–24MathSciNetCrossRef Alswaihli J, Potthast R, Bojak I, Saddy D, Hutt A (2018) Kernel reconstruction for delayed neural field equations. J Math Neurosci 8:1–24MathSciNetCrossRef
2.
Zurück zum Zitat Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2):77–87MathSciNetCrossRef Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2):77–87MathSciNetCrossRef
3.
Zurück zum Zitat Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922MathSciNet Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922MathSciNet
4.
Zurück zum Zitat Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219(17):8938–8948MathSciNet Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219(17):8938–8948MathSciNet
5.
Zurück zum Zitat Asadi-Mehregan F, Assari P, Dehghan M (2023) The numerical solution of a mathematical model of the COVID-19 pandemic utilizing a meshless local discrete Galerkin method. Eng Comput 39(5):3327–3351CrossRef Asadi-Mehregan F, Assari P, Dehghan M (2023) The numerical solution of a mathematical model of the COVID-19 pandemic utilizing a meshless local discrete Galerkin method. Eng Comput 39(5):3327–3351CrossRef
6.
Zurück zum Zitat Asadi-Mehregan F, Assari P, Dehghan M (2024) Simulation of the cancer cell growth and their invasion into healthy tissues using local radial basis function method. Eng Anal Bound Elem 163:56–68MathSciNetCrossRef Asadi-Mehregan F, Assari P, Dehghan M (2024) Simulation of the cancer cell growth and their invasion into healthy tissues using local radial basis function method. Eng Anal Bound Elem 163:56–68MathSciNetCrossRef
7.
Zurück zum Zitat Assari P (2018) The thin plate spline collocation method for solving integro-differential equations arisen from the charged particle motion in oscillating magnetic fields. Eng Comput 35(4):1706–1726CrossRef Assari P (2018) The thin plate spline collocation method for solving integro-differential equations arisen from the charged particle motion in oscillating magnetic fields. Eng Comput 35(4):1706–1726CrossRef
8.
Zurück zum Zitat Assari P (2019) On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Eng Comput 35(3):893–916CrossRef Assari P (2019) On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Eng Comput 35(3):893–916CrossRef
9.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2014) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algorithm 67:423–455MathSciNetCrossRef Assari P, Adibi H, Dehghan M (2014) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algorithm 67:423–455MathSciNetCrossRef
10.
Zurück zum Zitat Atkinson K, Flores J (1993) The discrete collocation method for nonlinear integral equations. IMA J Numer Anal 13(2):195–213MathSciNetCrossRef Atkinson K, Flores J (1993) The discrete collocation method for nonlinear integral equations. IMA J Numer Anal 13(2):195–213MathSciNetCrossRef
11.
Zurück zum Zitat Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeCrossRef Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeCrossRef
12.
Zurück zum Zitat Atkinson KE, Bogomolny A (1987) The discrete Galerkin method for integral equations. Math Comput 48(178):595–616MathSciNetCrossRef Atkinson KE, Bogomolny A (1987) The discrete Galerkin method for integral equations. Math Comput 48(178):595–616MathSciNetCrossRef
13.
Zurück zum Zitat Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127MathSciNetCrossRef Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127MathSciNetCrossRef
14.
15.
Zurück zum Zitat Barnett G, Del Tongo L (2008) Data structures and algorithms: annotated reference with examples. DotNETSlackers Barnett G, Del Tongo L (2008) Data structures and algorithms: annotated reference with examples. DotNETSlackers
16.
Zurück zum Zitat beim Graben P, Kurths J (2008) Simulating global properties of electroencephalograms with minimal random neural networks. Neurocomputing 71(4–6):999–1007CrossRef beim Graben P, Kurths J (2008) Simulating global properties of electroencephalograms with minimal random neural networks. Neurocomputing 71(4–6):999–1007CrossRef
17.
Zurück zum Zitat Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302MathSciNetCrossRef Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302MathSciNetCrossRef
18.
Zurück zum Zitat Fasshauer GE (2005) Meshfree methods. In handbook of theoretical and computational nanotechnology. American Scientific Publishers, New York Fasshauer GE (2005) Meshfree methods. In handbook of theoretical and computational nanotechnology. American Scientific Publishers, New York
19.
Zurück zum Zitat Faye G, Faugeras O (2010) Some theoretical and numerical results for delayed neural field equations. Phys Nonlinear Phenom 239(9):561–578MathSciNetCrossRef Faye G, Faugeras O (2010) Some theoretical and numerical results for delayed neural field equations. Phys Nonlinear Phenom 239(9):561–578MathSciNetCrossRef
20.
Zurück zum Zitat Feng W, Yang K, Cui M, Gao X (2016) Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems. Int Commun Heat Mass Transfer 79:21–30CrossRef Feng W, Yang K, Cui M, Gao X (2016) Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems. Int Commun Heat Mass Transfer 79:21–30CrossRef
21.
Zurück zum Zitat Fu Z, Chen W, Yang H (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66MathSciNetCrossRef Fu Z, Chen W, Yang H (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66MathSciNetCrossRef
22.
Zurück zum Zitat Fu Z, Xi Q, Chen W, Cheng A (2018) A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput Math Appl 76(4):760–773MathSciNetCrossRef Fu Z, Xi Q, Chen W, Cheng A (2018) A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput Math Appl 76(4):760–773MathSciNetCrossRef
23.
Zurück zum Zitat Gao X, Zhang C, Guo L (2007) Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems. Eng Anal Bound Elem 31(12):974–982CrossRef Gao X, Zhang C, Guo L (2007) Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems. Eng Anal Bound Elem 31(12):974–982CrossRef
24.
Zurück zum Zitat Graben P (2007) Foundations of Neurophysics. In: Graben P, Zhou C, Thiel M, Kurths J (eds) Lectures in supercomputational neurosciences: dynamics in complex brain networks. Springer, pp 3–48 Graben P (2007) Foundations of Neurophysics. In: Graben P, Zhou C, Thiel M, Kurths J (eds) Lectures in supercomputational neurosciences: dynamics in complex brain networks. Springer, pp 3–48
25.
Zurück zum Zitat Guo J, Jung J (2017) A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method. Numer Math 112:27–50MathSciNetCrossRef Guo J, Jung J (2017) A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method. Numer Math 112:27–50MathSciNetCrossRef
26.
Zurück zum Zitat Guo J, Jung J (2017) Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters. J Sci Comput 70:551–575MathSciNetCrossRef Guo J, Jung J (2017) Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters. J Sci Comput 70:551–575MathSciNetCrossRef
27.
Zurück zum Zitat Hosseinian A, Assari P, Dehghan M (2024) An efficient numerical scheme to solve generalized Abel’s integral equations with delay arguments utilizing locally supported RBFs. J Comput Appl Math 446:115867MathSciNetCrossRef Hosseinian A, Assari P, Dehghan M (2024) An efficient numerical scheme to solve generalized Abel’s integral equations with delay arguments utilizing locally supported RBFs. J Comput Appl Math 446:115867MathSciNetCrossRef
28.
Zurück zum Zitat Hutt A, Rougier N (2014) Numerical simulation scheme of one-and two dimensional neural fields involving space-dependent delays. In: Coombes S, Beim Graben P, Potthast R, Wright J (eds) Neural fields: theory and applications. Springer, pp 175–185 Hutt A, Rougier N (2014) Numerical simulation scheme of one-and two dimensional neural fields involving space-dependent delays. In: Coombes S, Beim Graben P, Potthast R, Wright J (eds) Neural fields: theory and applications. Springer, pp 175–185
29.
Zurück zum Zitat Kacprzyk J, Pedrycz W (2015) Springer handbook of computational intelligence. Springer, BerlinCrossRef Kacprzyk J, Pedrycz W (2015) Springer handbook of computational intelligence. Springer, BerlinCrossRef
30.
Zurück zum Zitat Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753MathSciNetCrossRef Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753MathSciNetCrossRef
31.
Zurück zum Zitat Kulikov GY, Lima PM, Kulikova M (2021) Numerical solution of the neural field equation in the presence of random disturbance. J Comput Appl Math 387:112563MathSciNetCrossRef Kulikov GY, Lima PM, Kulikova M (2021) Numerical solution of the neural field equation in the presence of random disturbance. J Comput Appl Math 387:112563MathSciNetCrossRef
32.
Zurück zum Zitat Kumar S (1988) A discrete collocation-type method for hammerstein equations. SIAM J Numer Anal 25(2):328–341MathSciNetCrossRef Kumar S (1988) A discrete collocation-type method for hammerstein equations. SIAM J Numer Anal 25(2):328–341MathSciNetCrossRef
33.
Zurück zum Zitat Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158MathSciNetCrossRef Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158MathSciNetCrossRef
34.
Zurück zum Zitat Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256MathSciNetCrossRef Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256MathSciNetCrossRef
35.
Zurück zum Zitat Li X, Zhu J (2009) A Galerkin boundary node method and its convergence analysis. J Comput Appl Math 230(1):314–328MathSciNetCrossRef Li X, Zhu J (2009) A Galerkin boundary node method and its convergence analysis. J Comput Appl Math 230(1):314–328MathSciNetCrossRef
36.
Zurück zum Zitat Lima PM, Buckwar E (2015) Numerical solution of the neural field equation in the two-dimensional case. SIAM J Sci Comput 37(6):B962–B979MathSciNetCrossRef Lima PM, Buckwar E (2015) Numerical solution of the neural field equation in the two-dimensional case. SIAM J Sci Comput 37(6):B962–B979MathSciNetCrossRef
37.
Zurück zum Zitat Martin R, Chappell DJ, Chuzhanova N, Crofts JJ (2018) A numerical simulation of neural fields on curved geometries. J Comput Neurosci 45:133–145MathSciNetCrossRef Martin R, Chappell DJ, Chuzhanova N, Crofts JJ (2018) A numerical simulation of neural fields on curved geometries. J Comput Neurosci 45:133–145MathSciNetCrossRef
38.
Zurück zum Zitat Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262MathSciNetCrossRef Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262MathSciNetCrossRef
39.
Zurück zum Zitat Mukherjee YU, Mukherjee S (1997) The boundary node method for potential problems. Int J Numer Methods Eng 40(5):797–815CrossRef Mukherjee YU, Mukherjee S (1997) The boundary node method for potential problems. Int J Numer Methods Eng 40(5):797–815CrossRef
40.
Zurück zum Zitat Sequeira TF, Lima PM (2022) Numerical simulations of one-and two-dimensional stochastic neural field equations with delay. J Comput Neurosci 50(3):299–311MathSciNetCrossRef Sequeira TF, Lima PM (2022) Numerical simulations of one-and two-dimensional stochastic neural field equations with delay. J Comput Neurosci 50(3):299–311MathSciNetCrossRef
41.
Zurück zum Zitat Shawagfeh N, Arqub OA, Momani S (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762MathSciNet Shawagfeh N, Arqub OA, Momani S (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762MathSciNet
42.
Zurück zum Zitat Siraj ul Islam R, Sarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations. Appl Math Model 36(3):1148–1160MathSciNetCrossRef Siraj ul Islam R, Sarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations. Appl Math Model 36(3):1148–1160MathSciNetCrossRef
43.
Zurück zum Zitat Siraj ul Islam R, Vertnik R, Sarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetCrossRef Siraj ul Islam R, Vertnik R, Sarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetCrossRef
44.
Zurück zum Zitat Sladek J, Sladek V, Atluri SN (2000) Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties. Comput Mech 24:456–462CrossRef Sladek J, Sladek V, Atluri SN (2000) Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties. Comput Mech 24:456–462CrossRef
45.
Zurück zum Zitat Wang L, Wang Z, Qian Z (2017) A meshfree method for inverse wave propagation using collocation and radial basis functions. Comput Methods Appl Mech Eng 322:311–350MathSciNetCrossRef Wang L, Wang Z, Qian Z (2017) A meshfree method for inverse wave propagation using collocation and radial basis functions. Comput Methods Appl Mech Eng 322:311–350MathSciNetCrossRef
46.
Zurück zum Zitat Wang SS (1983) Fracture mechanics for delamination problems in composite materials. J Compos Mate 17(3):210–223CrossRef Wang SS (1983) Fracture mechanics for delamination problems in composite materials. J Compos Mate 17(3):210–223CrossRef
47.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, New York Wendland H (2005) Scattered data approximation. Cambridge University Press, New York
48.
Zurück zum Zitat Wendland H (2001) Local polynomial reproduction and moving least squares approximation. IMA J Numer Anal 21(1):285–300MathSciNetCrossRef Wendland H (2001) Local polynomial reproduction and moving least squares approximation. IMA J Numer Anal 21(1):285–300MathSciNetCrossRef
49.
Zurück zum Zitat Zuppa C (2003) Good quality point sets and error estimates for moving least square approximations. Appl Numer Math 47(3–4):575–585MathSciNetCrossRef Zuppa C (2003) Good quality point sets and error estimates for moving least square approximations. Appl Numer Math 47(3–4):575–585MathSciNetCrossRef
Metadaten
Titel
The simulation of spatio-temporal neural field equations with delay depending on the position of neural fibers using the Galerkin method based on moving least squares
verfasst von
Alireza Hosseinian
Pouria Assari
Mehdi Dehghan
Publikationsdatum
23.12.2024
Verlag
Springer London
Erschienen in
Engineering with Computers
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-02088-7