Skip to main content

2020 | OriginalPaper | Buchkapitel

The Slingshot Approach

Model-Driven Engineering the Coordination of Autoscaling Mechanisms for Elastic Cloud Applications

verfasst von : Floriment Klinaku, Steffen Becker

Erschienen in: Advances in Service-Oriented and Cloud Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Distributed software systems composed of two or more self-adaptive components require the presence of a coordination mechanism to ensure the fulfilment of overall system objectives over time. Exploiting elasticity, for example, is one important objective for operating software systems in the cloud. The recently adopted architectural style of independent Microservices, each with its autoscaling mechanism, creates a class of software systems that are composed of several self-adaptive components which provision and release resources in an autonomous manner. Manually evaluating the impact of coordinating actions among autoscaling mechanisms can be complicated because of their large configuration space. So, to aid software engineers in designing and evaluating coordinating actions for achieving overall elastic applications, we propose the Slingshot approach which leverages model-driven quality prediction and search-based software engineering techniques. The approach has three facets: (1) the decomposition of a software architecture into elastic layers where the impact of adaptations propagates in a top-down order; (2) the extension of self-adaptive performance modelling approaches to allow engineers to specify and analyze dependencies between layers; and (3) finding the optimal adaptation strategy of a lower layer for a fixed upper layer context. In this paper, we present a road-map consisting of research objectives and expected benefits of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A group of users that share the same SLA against a SaaS.
 
Literatur
2.
Zurück zum Zitat Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009). Special Issue: Software Performance - Modeling and AnalysisCrossRef Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009). Special Issue: Software Performance - Modeling and AnalysisCrossRef
3.
Zurück zum Zitat Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud auto scaling systems. In: CSUR (2018) Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud auto scaling systems. In: CSUR (2018)
4.
Zurück zum Zitat Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. Future Gener. Comput. Syst. 87, 629–638 (2018)CrossRef Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. Future Gener. Comput. Syst. 87, 629–638 (2018)CrossRef
5.
Zurück zum Zitat Harman, M., Briand, L., Wolf, A.: The current state and future of search based software engineering (2007) Harman, M., Briand, L., Wolf, A.: The current state and future of search based software engineering (2007)
6.
Zurück zum Zitat Herbst, N., et al.: Ready for Rain? A View from SPEC Research on the Future of Cloud Metrics. Technical report. SPEC-RG-2016-01, SPEC Research Group – Cloud Working Group (2016) Herbst, N., et al.: Ready for Rain? A View from SPEC Research on the Future of Cloud Metrics. Technical report. SPEC-RG-2016-01, SPEC Research Group – Cloud Working Group (2016)
7.
Zurück zum Zitat Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what it is not. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013) Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what it is not. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013)
8.
Zurück zum Zitat Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating architectural knowledge to efficiently conduct quality-of-service analyses. Softw. Pract. Exp. 48(2), 268–299 (2018)CrossRef Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating architectural knowledge to efficiently conduct quality-of-service analyses. Softw. Pract. Exp. 48(2), 268–299 (2018)CrossRef
9.
Zurück zum Zitat Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM, New York (2010) Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM, New York (2010)
10.
Zurück zum Zitat Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 141–1442 (2009)CrossRef Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 141–1442 (2009)CrossRef
11.
Zurück zum Zitat Vogel, T.: Model-driven engineering of self-adaptive software. Ph.D. thesis, Universität Potsdam (2018) Vogel, T.: Model-driven engineering of self-adaptive software. Ph.D. thesis, Universität Potsdam (2018)
Metadaten
Titel
The Slingshot Approach
verfasst von
Floriment Klinaku
Steffen Becker
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-63161-1_13