Skip to main content

2024 | OriginalPaper | Buchkapitel

The Spectrum Problem for the 4-Uniform 4-Colorable 3-Cycles with Maximum Degree 2

verfasst von : Ryan C. Bunge, Saad I. El-Zanati, Julie N. Kirkpatrick, Shania M. Sanderson, Michael J. Severino, William F. Turner

Erschienen in: Combinatorics, Graph Theory and Computing

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The complete t-uniform hypergraph of order v, denoted \(K^{(t)}_v\), has a set V  with v elements as its vertex set and the set of all t-element subsets of V  as its edge set. For the purposes of this work, we define a 4-uniform 3-cycle of maximum degree 2 to be any 4-uniform hypergraph of maximum degree 2 that can be obtained by adding two vertices to each of the three edges in \(K^{(2)}_3\). There are five such 4-uniform hypergraphs up to isomorphism. Two of them have chromatic number 4. We give necessary and sufficient conditions for the existence of a decomposition of the complete 4-uniform hypergraph of order v into these 4-colorable 3-cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des.16 (2008), 373–410.MathSciNetCrossRef P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des.16 (2008), 373–410.MathSciNetCrossRef
2.
Zurück zum Zitat M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math.345 (2022), no. 2, paper No. 112676, 8 pp. M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math.345 (2022), no. 2, paper No. 112676, 8 pp.
3.
Zurück zum Zitat Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai10, North-Holland, Amsterdam, 1975, 91–108. Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai10, North-Holland, Amsterdam, 1975, 91–108.
4.
Zurück zum Zitat R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math.310 (2010), 3088–3095.MathSciNetCrossRef R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math.310 (2010), 3088–3095.MathSciNetCrossRef
5.
Zurück zum Zitat J.-C. Bermond, A. Germa, and D. Sotteau, Hypergraph-designs, Ars Combin.3 (1977), 47–66.MathSciNet J.-C. Bermond, A. Germa, and D. Sotteau, Hypergraph-designs, Ars Combin.3 (1977), 47–66.MathSciNet
6.
Zurück zum Zitat D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin.60 (2014), 227–254.MathSciNet D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin.60 (2014), 227–254.MathSciNet
8.
Zurück zum Zitat R. C. Bunge, D. Collins, D. Conko-Camel, S. I. El-Zanati, R. Liebrecht, and A. Vasquez, Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles, Opuscula Math.40 (2020), 209–225.MathSciNetCrossRef R. C. Bunge, D. Collins, D. Conko-Camel, S. I. El-Zanati, R. Liebrecht, and A. Vasquez, Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles, Opuscula Math.40 (2020), 209–225.MathSciNetCrossRef
9.
Zurück zum Zitat R. C. Bunge, S. I. El-Zanati, P. Florido, C. Gaskins, W. F. Turner, and P. Ward, On loose 3-cycle decompositions of complete 4-uniform hypergraphs, Australas. J. Combin.86 (2023), 336–350.MathSciNet R. C. Bunge, S. I. El-Zanati, P. Florido, C. Gaskins, W. F. Turner, and P. Ward, On loose 3-cycle decompositions of complete 4-uniform hypergraphs, Australas. J. Combin.86 (2023), 336–350.MathSciNet
10.
Zurück zum Zitat R. C. Bunge, B. D. Darrow, S. I. El-Zanati, K. P. Hadaway, M. K. Pryor, A. J. Romer, A. Squires, and A. C. Stover, On tight 9-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.80 (2021), 233–240.MathSciNet R. C. Bunge, B. D. Darrow, S. I. El-Zanati, K. P. Hadaway, M. K. Pryor, A. J. Romer, A. Squires, and A. C. Stover, On tight 9-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.80 (2021), 233–240.MathSciNet
11.
Zurück zum Zitat R. C. Bunge, S. I. El-Zanati, L. Haman, C. Hatzer, K. Koe, and K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl.87 (2019), 75–84.MathSciNet R. C. Bunge, S. I. El-Zanati, L. Haman, C. Hatzer, K. Koe, and K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl.87 (2019), 75–84.MathSciNet
12.
Zurück zum Zitat R. C. Bunge, S. I. El-Zanati, J. Jeffries, and C. Vanden Eynden, Edge orbits and cyclic and r-pyramidal decompositions of complete uniform hypergraphs, Discrete Math.341 (2018), 3348–3354.MathSciNetCrossRef R. C. Bunge, S. I. El-Zanati, J. Jeffries, and C. Vanden Eynden, Edge orbits and cyclic and r-pyramidal decompositions of complete uniform hypergraphs, Discrete Math.341 (2018), 3348–3354.MathSciNetCrossRef
13.
Zurück zum Zitat R. C. Bunge, J. Jetton, M. Juarez, A. J. Netz, D. Roberts, and P. Ward, On loose 5-cycle decompositions, packings, and coverings of complete \(\lambda \)-fold 3-uniform hypergraphs. In Combinatorics and Combinatorial Computing - MCCCC34, Normal, IL, USA, October 21–23, 2022, (Ed. A. Bahmanian), Springer Proceedings in Mathematics & Statistics, In press. R. C. Bunge, J. Jetton, M. Juarez, A. J. Netz, D. Roberts, and P. Ward, On loose 5-cycle decompositions, packings, and coverings of complete \(\lambda \)-fold 3-uniform hypergraphs. In Combinatorics and Combinatorial Computing - MCCCC34, Normal, IL, USA, October 21–23, 2022, (Ed. A. Bahmanian), Springer Proceedings in Mathematics & Statistics, In press.
14.
Zurück zum Zitat C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110. C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110.
15.
Zurück zum Zitat S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages. S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages.
16.
Zurück zum Zitat S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages. S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages.
18.
Zurück zum Zitat H. Hanani, Decomposition of hypergraphs into octahedra, Second International Conference on Combinatorial Mathematics (New York, 1978), pp. 260–264, Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979. H. Hanani, Decomposition of hypergraphs into octahedra, Second International Conference on Combinatorial Mathematics (New York, 1978), pp. 260–264, Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979.
19.
Zurück zum Zitat H. Jordon and G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.71 (2018), 312–323.MathSciNet H. Jordon and G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.71 (2018), 312–323.MathSciNet
20.
Zurück zum Zitat P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages. P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages.
21.
Zurück zum Zitat G. B. Khosrovshahi and R. Laue, t-designs with \(t\geq 3\), in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 79–101. G. B. Khosrovshahi and R. Laue, t-designs with \(t\geq 3\), in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 79–101.
22.
Zurück zum Zitat J. Kuhl and M. W. Schroeder, Hamilton cycle decompositions of k-uniform k-partite hypergraphs, Australas. J. Combin.56 (2013), 23–37.MathSciNet J. Kuhl and M. W. Schroeder, Hamilton cycle decompositions of k-uniform k-partite hypergraphs, Australas. J. Combin.56 (2013), 23–37.MathSciNet
23.
Zurück zum Zitat D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A126 (2014), 128–135.MathSciNetCrossRef D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A126 (2014), 128–135.MathSciNetCrossRef
24.
Zurück zum Zitat M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin.45 (2009), 291–302.MathSciNet M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin.45 (2009), 291–302.MathSciNet
25.
Zurück zum Zitat M. W. Schroeder, On Hamilton cycle decompositions of r-uniform r-partite hypergraphs, Discrete Math.315 (2014), 1–8.MathSciNetCrossRef M. W. Schroeder, On Hamilton cycle decompositions of r-uniform r-partite hypergraphs, Discrete Math.315 (2014), 1–8.MathSciNetCrossRef
26.
Zurück zum Zitat R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in “Proc. Fifth British Combinatorial Conference” (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647–659, Congr. Numer. XV, 1975. R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in “Proc. Fifth British Combinatorial Conference” (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647–659, Congr. Numer. XV, 1975.
Metadaten
Titel
The Spectrum Problem for the 4-Uniform 4-Colorable 3-Cycles with Maximum Degree 2
verfasst von
Ryan C. Bunge
Saad I. El-Zanati
Julie N. Kirkpatrick
Shania M. Sanderson
Michael J. Severino
William F. Turner
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_18