Skip to main content
Erschienen in: Steel in Translation 2/2020

01.02.2020

The Structural Formation in Differentially-Hardened 100-Meter-Long Rails during Long-Term Operation

verfasst von: V. E. Kormyshev, E. V. Polevoi, A. A. Yur’ev, V. E. Gromov, Yu. F. Ivanov

Erschienen in: Steel in Translation | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By using modern physical-materials science methods, the roll surface of structural-phase states and mechanical properties has been analyzed at a distance ranging from 0 to 22 mm with respect to the central axis and to the fillet of differentially-quenched DT 350 grade 100-meter-long rails. These rails have been manufactured at Evraz United West Siberian Metallurgical Plant after long-term operation on an experimental test ring (passed gross tonnage amounting to 1411 million tons). According to chemical composition, the rail metal satisfies the requirements of TU (Engineering Specifications) 0921-276–01124323–2012 for steel E76HF grade steel. The impact strength and hardness on the head’s roll surface and throughout the cross section meet the TU (Engineering Specifications) requirements. The microstructure of the rail metal is represented by finely dispersed lamellar pearlite—1.5 points of scale No. 7 according to GOST (State Standard) 8233—with inclusions of excess ferrite along the grain boundaries. The interlamellar distance in the railhead ranges from 0.10 to 0.15 μm. The long-term operation of the rails is accompanied by the formation of a gradient structure presented by a regular change in hardness, microhardness, and impact strength throughout the railhead section. The microhardness at a depth of 2 mm counted from the roll surface amounts to 1481–1486 MPa. At a depth of 10 mm, the microhardness decreases to 1210–1385 MPa, which is caused by an increase in the interlamellar distance and by a decrease in the level of metal cold-work strengthening in the course of long-term operation. It has been suggested that this could be caused by an increase in the interlamellar distance and by a decrease in the level of cold-work strengthening in the course of long-term operation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gromov, V.E., Yuriev, A.B., Morozov, K.V., and Ivanov, Y.F., Microstructure of Quenched Rails, Cambridge: Cambridge Int. Sci., 2016. Gromov, V.E., Yuriev, A.B., Morozov, K.V., and Ivanov, Y.F., Microstructure of Quenched Rails, Cambridge: Cambridge Int. Sci., 2016.
2.
Zurück zum Zitat Shur, E.A., Povrezhdeniya rel’sov (Rail Damage), Moscow: Intekst, 2012. Shur, E.A., Povrezhdeniya rel’sov (Rail Damage), Moscow: Intekst, 2012.
3.
Zurück zum Zitat Ivanisenko, Yu. and Fecht, H.J., Microstructure modification in the surface layers of railway rails and wheels, Steel Tech., 2008, vol. 3, no. 1, pp. 19–23. Ivanisenko, Yu. and Fecht, H.J., Microstructure modification in the surface layers of railway rails and wheels, Steel Tech., 2008, vol. 3, no. 1, pp. 19–23.
4.
Zurück zum Zitat Ivanisenko, Yu., MacLaren, I., Souvage, X., Valiev, R.Z., and Fecht, H.J., Shear-induced α → γ transformation in nanoscale Fe–C composite, Acta Mater., 2006, vol. 54, pp. 1659–1669.CrossRef Ivanisenko, Yu., MacLaren, I., Souvage, X., Valiev, R.Z., and Fecht, H.J., Shear-induced α → γ transformation in nanoscale Fe–C composite, Acta Mater., 2006, vol. 54, pp. 1659–1669.CrossRef
5.
Zurück zum Zitat Ning, J.-L., Courtois-Manara, E., Kurmanaeva, L., Ganeev, A.V., Valiev, R.Z., Kübel, C., and Ivanisenko, Yu., Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion, Mater. Sci. Eng., A, 2013, vol. 581, pp. 8–15.CrossRef Ning, J.-L., Courtois-Manara, E., Kurmanaeva, L., Ganeev, A.V., Valiev, R.Z., Kübel, C., and Ivanisenko, Yu., Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion, Mater. Sci. Eng., A, 2013, vol. 581, pp. 8–15.CrossRef
6.
Zurück zum Zitat Gavriljuk, V.G., Decomposition of cementite in pearlitic steel due to plastic deformation, Mater. Sci. Eng., A, 2003, vol. 345, nos. 1–2, pp. 81–89.CrossRef Gavriljuk, V.G., Decomposition of cementite in pearlitic steel due to plastic deformation, Mater. Sci. Eng., A, 2003, vol. 345, nos. 1–2, pp. 81–89.CrossRef
7.
Zurück zum Zitat Li, Y.J., Chai, P., Bochers, C., Westerkamp, S., Goto, S., Raabe, D., and Kirchheim, R., Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite, Acta Mater., 2011, vol. 59, no. 10, pp. 3965–3977.CrossRef Li, Y.J., Chai, P., Bochers, C., Westerkamp, S., Goto, S., Raabe, D., and Kirchheim, R., Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite, Acta Mater., 2011, vol. 59, no. 10, pp. 3965–3977.CrossRef
8.
Zurück zum Zitat Gavriljuk, V.G., Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires, Scr. Mater., 2001, vol. 45, no. 12, pp. 1469–1472.CrossRef Gavriljuk, V.G., Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires, Scr. Mater., 2001, vol. 45, no. 12, pp. 1469–1472.CrossRef
9.
Zurück zum Zitat Sheinman, E., Wear of rails. A review of the American press, J. Frict. Wear, 2012, vol. 33, no. 4, pp. 308–314.CrossRef Sheinman, E., Wear of rails. A review of the American press, J. Frict. Wear, 2012, vol. 33, no. 4, pp. 308–314.CrossRef
10.
Zurück zum Zitat Anisimov, P.S., Influence of design and parameters of trolleys on wear of wheels and rails, Zheleznodorozhn. Transp., 1999, no. 6, pp. 38–42. Anisimov, P.S., Influence of design and parameters of trolleys on wear of wheels and rails, Zheleznodorozhn. Transp., 1999, no. 6, pp. 38–42.
11.
Zurück zum Zitat Gromov, V.E., Yuriev, A.A., Ivanov, Yu.F., et al., Defect substructure change in 100-m differentially hardened rails in long-term operation, Mater. Lett., 2017, vol. 209, pp. 224–227.CrossRef Gromov, V.E., Yuriev, A.A., Ivanov, Yu.F., et al., Defect substructure change in 100-m differentially hardened rails in long-term operation, Mater. Lett., 2017, vol. 209, pp. 224–227.CrossRef
12.
Zurück zum Zitat Gromov, V.E., Yuriev, A.A., Peregudov, O.A., et al., Physical nature of structure and properties degradation of rail surface after long term operation, AIP Conf. Proc., 2017, vol. 1909, p. 020066.CrossRef Gromov, V.E., Yuriev, A.A., Peregudov, O.A., et al., Physical nature of structure and properties degradation of rail surface after long term operation, AIP Conf. Proc., 2017, vol. 1909, p. 020066.CrossRef
13.
Zurück zum Zitat Influence of rail wear and lubrication on interaction of vehicle-rail, Zhelezn. Dorogi Mira, 2003, no. 9, pp. 66–70. Influence of rail wear and lubrication on interaction of vehicle-rail, Zhelezn. Dorogi Mira, 2003, no. 9, pp. 66–70.
14.
Zurück zum Zitat Ermakov, V.M., Analysis of road performance in order to reduce “wheel-rail wear,” Zheleznodorozhn. Transp., 2005, no. 7, pp. 58–64. Ermakov, V.M., Analysis of road performance in order to reduce “wheel-rail wear,” Zheleznodorozhn. Transp., 2005, no. 7, pp. 58–64.
15.
Zurück zum Zitat Lysyuk, V.S., The reasons of cars coming-off and rail wear in curves, Zheleznodorozhn. Transp., 2004, no. 11, pp. 50–52. Lysyuk, V.S., The reasons of cars coming-off and rail wear in curves, Zheleznodorozhn. Transp., 2004, no. 11, pp. 50–52.
16.
Zurück zum Zitat Shapovalov, V.V., Shcherbak, P.N., Maiba, I.A., and Kostygov, V.T., Methods of elimination of wheels and rails wear, Zheleznodorozhn. Transp., 2004, no. 3, pp. 111–115. Shapovalov, V.V., Shcherbak, P.N., Maiba, I.A., and Kostygov, V.T., Methods of elimination of wheels and rails wear, Zheleznodorozhn. Transp., 2004, no. 3, pp. 111–115.
17.
Zurück zum Zitat Grebe, M., Ways to reduce wheel and rail wear, Zhelezn. Dorogi Mira, 2002, no. 4, pp. 65–72. Grebe, M., Ways to reduce wheel and rail wear, Zhelezn. Dorogi Mira, 2002, no. 4, pp. 65–72.
18.
Zurück zum Zitat Zhong, W., Hu, J.J., Shen, P. Wang, C.Y., and Lius, Q.Y., Experimental investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway and selection of rail material, Wear, 2011, vol. 271, nos. 9–10, pp. 2485–2493.CrossRef Zhong, W., Hu, J.J., Shen, P. Wang, C.Y., and Lius, Q.Y., Experimental investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway and selection of rail material, Wear, 2011, vol. 271, nos. 9–10, pp. 2485–2493.CrossRef
19.
Zurück zum Zitat Tyfour, W.R., Beynon, J.H., and Kapoor, A., The steady state wear behavior of pearlitic rail steel under dry rolling-sliding contact conditions, Wear, 1995, vol. 180, nos. 1–2, pp. 79–89.CrossRef Tyfour, W.R., Beynon, J.H., and Kapoor, A., The steady state wear behavior of pearlitic rail steel under dry rolling-sliding contact conditions, Wear, 1995, vol. 180, nos. 1–2, pp. 79–89.CrossRef
20.
Zurück zum Zitat Singh, U.P. and Singh, R., Wear investigation of wheel and rail steels under conditions of sliding and rolling-sliding contact with particular regard to microstructural parameters, Wear, 1993, vol. 170, no. 1, pp. 93–99.CrossRef Singh, U.P. and Singh, R., Wear investigation of wheel and rail steels under conditions of sliding and rolling-sliding contact with particular regard to microstructural parameters, Wear, 1993, vol. 170, no. 1, pp. 93–99.CrossRef
21.
Zurück zum Zitat Defekty rel’sov. Klassifikatsiya, katalog i parametry defektnykh i ostrodefektnykh rel’sov (Rail Defects: Classification, Catalog and Parameters of Cropped and Defective Rails), Moscow: Ross. Zhelezn. Dorogi, 2014. Defekty rel’sov. Klassifikatsiya, katalog i parametry defektnykh i ostrodefektnykh rel’sov (Rail Defects: Classification, Catalog and Parameters of Cropped and Defective Rails), Moscow: Ross. Zhelezn. Dorogi, 2014.
Metadaten
Titel
The Structural Formation in Differentially-Hardened 100-Meter-Long Rails during Long-Term Operation
verfasst von
V. E. Kormyshev
E. V. Polevoi
A. A. Yur’ev
V. E. Gromov
Yu. F. Ivanov
Publikationsdatum
01.02.2020
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 2/2020
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220020047

Weitere Artikel der Ausgabe 2/2020

Steel in Translation 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.