Skip to main content
Erschienen in:

01.10.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Structure and Fracture Pattern of a Сu–Ti–Al–Ni–Fe–C–B Composite after Abrasive Wear

verfasst von: N. B. Pugacheva, T. M. Bykova, E. I. Senaeva

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure, chemical and phase compositions, hardness, and wear resistance of a Cu–Ti–Al–Ni–Fe–C–B composite prepared by self-propagating high-temperature synthesis (SHS) have been studied. The matrix was formed by Сu–8.5Al–5.0Ni–4.0Fe–1.0Si–0.2Cr aluminum bronze. The powders of Ti, C, and B4C were used for synthesis. The composite matrix is shown to be a copper-based solid solution, which contains eutectic (Cu + (Ni,Fe)Al) regions with the microhardness of 900 HV 0.1. The strengthening phases are TiC and TiB2. The microhardness of (γ + TiC) regions is 550 HV 0.1, and that of (Cu + TiB2 + TiC) regions is 700 HV 0.1. The integral hardness of the composite is 62 HRC. The (γ + TiC) regions are the most plastic structural component of the composite, which are characterized by a high maximum indentation depth, the total mechanical work of indentation and a component of plastic indentation work (φ), and indentation creep (СIT). Abrasive wear results in cut-off of the surface layers of the structural components (Cu + TiC) and (Cu + (Ni,Fe)Al) with the formation of a smooth surface. The roughness of the sample surface does not exceed 2.8 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. G. Merzhanov, Solid Flame Combustion (ISMAN, Chernogolovka, 2000) [in Russian]. A. G. Merzhanov, Solid Flame Combustion (ISMAN, Chernogolovka, 2000) [in Russian].
2.
Zurück zum Zitat A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Metallurgy of Self-Propagating High-Temperature Synthesis of Materials (Mashinostroenie, Moscow, 2007) [in Russian]. A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Metallurgy of Self-Propagating High-Temperature Synthesis of Materials (Mashinostroenie, Moscow, 2007) [in Russian].
3.
Zurück zum Zitat X. Zhang, N. Liu, C. Rong, and J. Zhou, “Microstructure and mechanical properties of TiC–TiN–Zr–WC–Ni–Co cermets,” Ceram. Int. 35, 1187–1193 (2009).CrossRef X. Zhang, N. Liu, C. Rong, and J. Zhou, “Microstructure and mechanical properties of TiC–TiN–Zr–WC–Ni–Co cermets,” Ceram. Int. 35, 1187–1193 (2009).CrossRef
4.
Zurück zum Zitat J. S. Kim, D. V. Dudina, J. C. Kom, Y. S. Kwon, J. J. Park, and C. K. Rhu, “Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark–plasma sintering,” J. Nanosci. Nanotechnol. 10, 252–257 (2010).CrossRef J. S. Kim, D. V. Dudina, J. C. Kom, Y. S. Kwon, J. J. Park, and C. K. Rhu, “Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark–plasma sintering,” J. Nanosci. Nanotechnol. 10, 252–257 (2010).CrossRef
5.
Zurück zum Zitat O. N. T. Yoang, V. N. Hoang, J. S. Kim, and D. V. Dudina, “Strucrural investigation of TiC–Cu nanocomposites prepared by ball milling and spark plasma sintering,” Metals 7, 123 (2017).CrossRef O. N. T. Yoang, V. N. Hoang, J. S. Kim, and D. V. Dudina, “Strucrural investigation of TiC–Cu nanocomposites prepared by ball milling and spark plasma sintering,” Metals 7, 123 (2017).CrossRef
6.
Zurück zum Zitat B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Heat Treatment of Non-Ferrous Metals and Alloys (MISiS, Moscow, 2005) [in Russian]. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Heat Treatment of Non-Ferrous Metals and Alloys (MISiS, Moscow, 2005) [in Russian].
7.
Zurück zum Zitat A. M. Zakharov, Phase Diagram of Binary and Ternary Systems (Metallurgiya, Moscow, 1990) [in Russian]. A. M. Zakharov, Phase Diagram of Binary and Ternary Systems (Metallurgiya, Moscow, 1990) [in Russian].
8.
Zurück zum Zitat Yu. I. Golovin, Nanoindentation and its Possibilities (Mashinostroenie, Moscow, 2009) [in Russian]. Yu. I. Golovin, Nanoindentation and its Possibilities (Mashinostroenie, Moscow, 2009) [in Russian].
9.
Zurück zum Zitat A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behavior,” Wear 246, 1–11 (2000).CrossRef A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behavior,” Wear 246, 1–11 (2000).CrossRef
10.
Zurück zum Zitat S. V. Smirnov, N. B. Pugacheva, A. V. Tropotov, and A. N. Soloshenko, “Resistance to deformation of structural constituents of a high-alloy brass,” Phys. Met. Metallogr. 91 (2), 210–219 (2001). S. V. Smirnov, N. B. Pugacheva, A. V. Tropotov, and A. N. Soloshenko, “Resistance to deformation of structural constituents of a high-alloy brass,” Phys. Met. Metallogr. 91 (2), 210–219 (2001).
11.
Zurück zum Zitat S. V. Smirnov, N. B. Pugacheva, A. N. Soloshenko, and A. V. Tropotov, “Plastic deformation of a high-alloy brass,” Phys. Met. Metallogr. 93 (6), 91–100 (2002). S. V. Smirnov, N. B. Pugacheva, A. N. Soloshenko, and A. V. Tropotov, “Plastic deformation of a high-alloy brass,” Phys. Met. Metallogr. 93 (6), 91–100 (2002).
12.
Zurück zum Zitat S. V. Smirnov and E. O. Smirnova, “A technique for determining coefficients of the “stress–strain” diagram by nanoscratch test results,” J. Mater. Res. 28, 1730–1736 (2014).CrossRef S. V. Smirnov and E. O. Smirnova, “A technique for determining coefficients of the “stress–strain” diagram by nanoscratch test results,” J. Mater. Res. 28, 1730–1736 (2014).CrossRef
13.
Zurück zum Zitat I. A. Veretennikova, N. B. Pugacheva, E. O. Smirnova, and N. S. Michurov, “Laser welding of titanium alloy VT1-0 and steel 12Kh18N10T with an intermediate copper insert,” Pis’ma Mater. 8 (1), 42–47 (2018). I. A. Veretennikova, N. B. Pugacheva, E. O. Smirnova, and N. S. Michurov, “Laser welding of titanium alloy VT1-0 and steel 12Kh18N10T with an intermediate copper insert,” Pis’ma Mater. 8 (1), 42–47 (2018).
14.
Zurück zum Zitat S. Smirnov, M. Myasnikova, and N. Pugacheva, “Hierarchical simulation of plastic deformation and fracture of complexly alloyed brass,” Int. J. Damage Mech. 25, 251–265 (2016).CrossRef S. Smirnov, M. Myasnikova, and N. Pugacheva, “Hierarchical simulation of plastic deformation and fracture of complexly alloyed brass,” Int. J. Damage Mech. 25, 251–265 (2016).CrossRef
15.
Zurück zum Zitat L. M. Rybakova and L. I. Kuksenova, Structure and Wear Resistance of Metal (Mashinostroenie, Moscow, 1983) [in Russian]. L. M. Rybakova and L. I. Kuksenova, Structure and Wear Resistance of Metal (Mashinostroenie, Moscow, 1983) [in Russian].
16.
Zurück zum Zitat N. B. Pugacheva, Yu. V. Nikolin, E. I. Senaeva, and I. Yu. Malygina, “Structure of Fe–Ni–Ti–C–B SHS composites,” Phys. Met. Metallogr. 120 (11), 1078–1084 (2019).CrossRef N. B. Pugacheva, Yu. V. Nikolin, E. I. Senaeva, and I. Yu. Malygina, “Structure of Fe–Ni–Ti–C–B SHS composites,” Phys. Met. Metallogr. 120 (11), 1078–1084 (2019).CrossRef
17.
Zurück zum Zitat B. V. Nikolin, M. B. Matevosyan, S. P. Kochugov, and N. B. Pugacheva, RF Patent No. 2680489 (2017). B. V. Nikolin, M. B. Matevosyan, S. P. Kochugov, and N. B. Pugacheva, RF Patent No. 2680489 (2017).
18.
20.
Zurück zum Zitat GOST R 8.748–2011 (ISO 14577–1: 2002) Metals and Alloys. Measurement of Hardness and Other Characteristics of Materials During Instrumental Indentation (Standartinform, Moscow, 2012), p. 32 [in Russian]. GOST R 8.748–2011 (ISO 14577–1: 2002) Metals and Alloys. Measurement of Hardness and Other Characteristics of Materials During Instrumental Indentation (Standartinform, Moscow, 2012), p. 32 [in Russian].
24.
Zurück zum Zitat A. V. Makarov, L. G. Korshunov, I. Yu. Malygina, and A. L. Osintseva, “Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A,” Phys. Met. Metallogr. 103 (5), 507–518 (2007).CrossRef A. V. Makarov, L. G. Korshunov, I. Yu. Malygina, and A. L. Osintseva, “Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A,” Phys. Met. Metallogr. 103 (5), 507–518 (2007).CrossRef
25.
Zurück zum Zitat A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan, I. Yu. Malygina, and A. L. Osintseva, “Eddy-current testing of the structure, hardness and abrasive wear resistance of laser-hardened and subsequently tempered high-strength cast iron,” Diagn., Resour. Mech. Mater. Struct., No. 6, 90–103 (2015). https://doi.org/10.17804/2410-9908.2015.6.090-103 A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan, I. Yu. Malygina, and A. L. Osintseva, “Eddy-current testing of the structure, hardness and abrasive wear resistance of laser-hardened and subsequently tempered high-strength cast iron,” Diagn., Resour. Mech. Mater. Struct., No. 6, 90–103 (2015). https://​doi.​org/​10.​17804/​2410-9908.​2015.​6.​090-103
26.
Zurück zum Zitat R. A. Savrvi, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel,” Phys. Met. Metallogr. 121 (10), 1015–1020 (2020).CrossRef R. A. Savrvi, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel,” Phys. Met. Metallogr. 121 (10), 1015–1020 (2020).CrossRef
28.
Zurück zum Zitat M. M. Khrushchov and M. A. Babichev, Abrasion Wear (Nauka, Moscow, 1970) [in Russian]. M. M. Khrushchov and M. A. Babichev, Abrasion Wear (Nauka, Moscow, 1970) [in Russian].
Metadaten
Titel
The Structure and Fracture Pattern of a Сu–Ti–Al–Ni–Fe–C–B Composite after Abrasive Wear
verfasst von
N. B. Pugacheva
T. M. Bykova
E. I. Senaeva
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600920

Weitere Artikel der Ausgabe 10/2022

Physics of Metals and Metallography 10/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions