Skip to main content
Erschienen in: Journal of Elasticity 1-2/2019

14.01.2019

The Symmetries of Octupolar Tensors

verfasst von: Giuseppe Gaeta, Epifanio G. Virga

Erschienen in: Journal of Elasticity | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Octupolar tensors are third order, completely symmetric and traceless tensors. Whereas in 2D an octupolar tensor has the same symmetries as an equilateral triangle and can ultimately be identified with a vector in the plane, the symmetries that it enjoys in 3D are quite different, and only exceptionally reduce to those of a regular tetrahedron. By use of the octupolar potential, that is, the cubic form associated on the unit sphere with an octupolar tensor, we shall classify all inequivalent octupolar symmetries. This is a mathematical study which also reviews and incorporates some previous, less systematic attempts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In the Introduction to [30] (p. IX), we read:
About 25 years ago I started to write notes for a course for seniors and beginning graduate students at Carnegie Institute of Technology (renamed Carnegie-Mellon University in 1968). At first, the course was entitled “Tensor Analysis”. […] The notes were rewritten several times. They were widely distributed and they served as the basis for appendices to the books [9] and [44].
 
2
The superscript \(^{(2)}\) reminds us that this tensor expresses the field induced by polarization as a quadratic function of the external field, whereas the ordinary susceptibility establishes a linear relationship between the two fields.
 
3
More generally, we might consider potentials with contributions up to third order; thus we would have the sum of a scalar part, a vector one, another part described by a second order tensor, and finally the one described by the third order one. Here we focus on this last contribution, as the study of theories with scalar, vector, or second order tensor order parameters is standard (in principle; obviously concrete applications can present endless complications).
 
4
As a general convention, we will denote the potentials in Cartesian coordinates by \(\varPhi \) (with several suffixes) and those in spherical coordinates—which we always consider only for \(r=1\)—by \(\varPsi \) (again with corresponding suffixes).
 
5
It may be worth mentioning that (in particular, if we are satisfied with studying \(\varPhi \) on one hemisphere, which is justified by (3.2)) a third option is present, i.e., setting \(z = \pm \sqrt{1 - x^{2} - y^{2}}\) and considering \(\varPhi \) as a function of \(x\) and \(y\); these take value in the unit disk. This will be used in Sect. 5.3.
 
6
In fact, as pointed out by Walcher [51], this kind of results follow ultimately from the work of Bezout on intersection theory dating back to the 18th century. See his paper [52] for details.
 
7
It should be noted that the “disappearance” of real critical points—w.r.t. the generic situation described by Röhrl’s theorem—is related, at least in our model, to the appearance of a “monkey saddle” [14], i.e., of a critical point with a non-generic index; see below for detail.
 
8
In fact, if \(\mathbf{v}\) is an eigenvector of \(M\) with eigenvalue \(\lambda \), then for any number \(\alpha \neq 0\) also \(\mathbf{w} = \alpha {\mathbf{v}}\) is an eigenvector with the same eigenvalue \(\lambda \).
 
9
In this paper, the adjective “generic” is given the meaning common in algebraic geometry, that is, it designates a property valid away from the roots of a polynomial in parameter space [5].
 
10
This means that we can rule out the possibility to have \(\alpha _{3} = 0\). In fact, even in the case this is a local maximum at height zero, we can always—see Remark 6—choose the North Pole to be an absolute maximum, and this is necessarily positive.
 
11
In order to know the value for the corresponding \(\lambda \), one needs to express the solution in Cartesian coordinates and go back to (5.22); this is due to the fact that our change of coordinates was performed imposing \(r=1\) and thus the constraint term, which represents the dynamical origin of \(\lambda \), is absent in the angular coordinates.
 
12
To compare the expressions worked out in this paper for the Hessian matrix of the octupolar potential with those featuring in [14], the reader should heed that these differ by a scaling factor: the Hessian matrix here is three times the Hessian matrix there.
 
13
It should be noted that in our previous work [14] we have used a slightly different reparametrization, with \(\rho \) instead of \(\rho /2\). This accounts for the differences in many of the forthcoming formulas.
 
14
There are also maps acting on \(\rho \) by changing its sign and leaving the potential invariant; these are not admitted as we have required \(\rho \in [0,2]\).
 
15
Which thus are presumably more complicated than anticipated.
 
Literatur
1.
Zurück zum Zitat Ashcroft, N.W., Mermin, D.N.: Solid State Physics. Academic Press/Saunders, San Diego/Philadelphia (1976) MATH Ashcroft, N.W., Mermin, D.N.: Solid State Physics. Academic Press/Saunders, San Diego/Philadelphia (1976) MATH
3.
Zurück zum Zitat Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, Burlington (2008) Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, Burlington (2008)
4.
Zurück zum Zitat Buckingham, A.D.: Angular correlation in liquids. Discuss. Faraday Soc. 43, 205–211 (1967) CrossRef Buckingham, A.D.: Angular correlation in liquids. Discuss. Faraday Soc. 43, 205–211 (1967) CrossRef
5.
9.
Zurück zum Zitat Coleman, B.D., Markovitz, H., Noll, W.: Viscometric Flows of Non-Newtonian Fluids, Theory and Experiment. Springer Tracts in Natural Philosophy, vol. 5. Springer, Berlin (1966) MATHCrossRef Coleman, B.D., Markovitz, H., Noll, W.: Viscometric Flows of Non-Newtonian Fluids, Theory and Experiment. Springer Tracts in Natural Philosophy, vol. 5. Springer, Berlin (1966) MATHCrossRef
10.
Zurück zum Zitat Dailey, C.A., Burke, B.J., Simpson, G.J.: The general failure of Kleinman symmetry in practical nonlinear optical applications. Chem. Phys. Lett. 390(1), 8–13 (2004) ADSCrossRef Dailey, C.A., Burke, B.J., Simpson, G.J.: The general failure of Kleinman symmetry in practical nonlinear optical applications. Chem. Phys. Lett. 390(1), 8–13 (2004) ADSCrossRef
11.
Zurück zum Zitat Fel, L.G.: Symmetry of the Fréedericksz transition in nonchiral nematic liquid crystals. Phys. Rev. E 52, 2692–2701 (1995) ADSCrossRef Fel, L.G.: Symmetry of the Fréedericksz transition in nonchiral nematic liquid crystals. Phys. Rev. E 52, 2692–2701 (1995) ADSCrossRef
12.
Zurück zum Zitat Fel, L.G.: Tetrahedral symmetry in nematic liquid crystals. Phys. Rev. E 52, 702–717 (1995) ADSCrossRef Fel, L.G.: Tetrahedral symmetry in nematic liquid crystals. Phys. Rev. E 52, 702–717 (1995) ADSCrossRef
13.
Zurück zum Zitat Gaeta, G.: Reduction and equivariant branching lemma: dynamical systems, evolution PDEs, and gauge theories. Acta Appl. Math. 28, 43–68 (1992) MathSciNetMATH Gaeta, G.: Reduction and equivariant branching lemma: dynamical systems, evolution PDEs, and gauge theories. Acta Appl. Math. 28, 43–68 (1992) MathSciNetMATH
14.
Zurück zum Zitat Gaeta, G., Virga, E.G.: Octupolar order in three dimensions. Eur. Phys. J. E 39, 113 (2016) CrossRef Gaeta, G., Virga, E.G.: Octupolar order in three dimensions. Eur. Phys. J. E 39, 113 (2016) CrossRef
15.
Zurück zum Zitat de Gennes, P., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1993) de Gennes, P., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1993)
16.
Zurück zum Zitat Gramsbergen, E.F., Longa, L., de Jeu, W.H.: Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135(4), 195–257 (1986) ADSCrossRef Gramsbergen, E.F., Longa, L., de Jeu, W.H.: Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135(4), 195–257 (1986) ADSCrossRef
17.
Zurück zum Zitat Hamermesh, M.: Group Theory and Its Application to Physical Problems p. 11501. Dover, Mineola (1989) Hamermesh, M.: Group Theory and Its Application to Physical Problems p. 11501. Dover, Mineola (1989)
18.
Zurück zum Zitat Kanis, D.R., Ratner, M.A., Marks, T.J.: Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94, 195–242 (1994) CrossRef Kanis, D.R., Ratner, M.A., Marks, T.J.: Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94, 195–242 (1994) CrossRef
19.
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996) MATH Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996) MATH
20.
Zurück zum Zitat Kleinman, D.A.: Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962) ADSCrossRef Kleinman, D.A.: Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962) ADSCrossRef
21.
22.
Zurück zum Zitat Landau, L.D.: On the theory of phase transitions I. Zh. Èksp. Teor. Fiz. 7, 19–32 (1937) Landau, L.D.: On the theory of phase transitions I. Zh. Èksp. Teor. Fiz. 7, 19–32 (1937)
23.
Zurück zum Zitat Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon Press, Oxford (1958) MATH Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon Press, Oxford (1958) MATH
24.
Zurück zum Zitat Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, Oxford (1965) MATH Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, Oxford (1965) MATH
25.
Zurück zum Zitat Liu, K., Greitemann, J., Pollet, L.: Generic first-order phase transitions between isotropic and orientational phases with polyhedral symmetries. Phys. Rev. E 97, 012706 (2018) ADSCrossRef Liu, K., Greitemann, J., Pollet, L.: Generic first-order phase transitions between isotropic and orientational phases with polyhedral symmetries. Phys. Rev. E 97, 012706 (2018) ADSCrossRef
26.
Zurück zum Zitat Liu, K., Nissinen, J., Nussinov, Z., Slager, R.J., Wu, K., Zaanen, J.: Classification of nematic order in \(2 + 1\) dimensions: dislocation melting and \(o(2)/{Z}_{N}\) lattice gauge theory. Phys. Rev. B 91, 075103 (2015) ADSCrossRef Liu, K., Nissinen, J., Nussinov, Z., Slager, R.J., Wu, K., Zaanen, J.: Classification of nematic order in \(2 + 1\) dimensions: dislocation melting and \(o(2)/{Z}_{N}\) lattice gauge theory. Phys. Rev. B 91, 075103 (2015) ADSCrossRef
27.
Zurück zum Zitat Liu, K., Nissinen, J., Slager, R.J., Wu, K., Zaanen, J.: Generalized liquid crystals: giant fluctuations and the vestigial chiral order of \(i\), \(o\), and \(t\) matter. Phys. Rev. X 6, 041025 (2016) Liu, K., Nissinen, J., Slager, R.J., Wu, K., Zaanen, J.: Generalized liquid crystals: giant fluctuations and the vestigial chiral order of \(i\), \(o\), and \(t\) matter. Phys. Rev. X 6, 041025 (2016)
28.
Zurück zum Zitat Lubensky, T.C., Radzihovsky, L.: Theory of bent-core liquid-crystal phases and phase transitions. Phys. Rev. E 66, 031704 (2002) ADSMathSciNetCrossRef Lubensky, T.C., Radzihovsky, L.: Theory of bent-core liquid-crystal phases and phase transitions. Phys. Rev. E 66, 031704 (2002) ADSMathSciNetCrossRef
29.
Zurück zum Zitat Ni, G., Qi, L., Wang, F., Wang, Y.: The degree of the e-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329(2), 1218–1229 (2007) MathSciNetMATHCrossRef Ni, G., Qi, L., Wang, F., Wang, Y.: The degree of the e-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329(2), 1218–1229 (2007) MathSciNetMATHCrossRef
30.
Zurück zum Zitat Noll, W.: Finite-Dimensional Spaces: Algebra, Geometry, and Analysis. Mechanics: Analysis, vol. 10. Martinus Nijhoff, Dordrecht (1987) MATHCrossRef Noll, W.: Finite-Dimensional Spaces: Algebra, Geometry, and Analysis. Mechanics: Analysis, vol. 10. Martinus Nijhoff, Dordrecht (1987) MATHCrossRef
31.
Zurück zum Zitat Peliti, L.: Statistical Mechanics in a Nutshell. Princeton University Press, Princeton (2011) MATHCrossRef Peliti, L.: Statistical Mechanics in a Nutshell. Princeton University Press, Princeton (2011) MATHCrossRef
33.
Zurück zum Zitat Qi, L.: Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J. Symb. Comput. 41(12), 1309–1327 (2006) MathSciNetMATHCrossRef Qi, L.: Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J. Symb. Comput. 41(12), 1309–1327 (2006) MathSciNetMATHCrossRef
35.
Zurück zum Zitat Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Advances in Mechanics and Mathematics, vol. 39. Springer, Singapore (2018) MATHCrossRef Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Advances in Mechanics and Mathematics, vol. 39. Springer, Singapore (2018) MATHCrossRef
37.
Zurück zum Zitat Röhrl, H.: A theorem on non-associative algebras and its application to differential equations. Manuscr. Math. 21(2), 181–187 (1977) MathSciNetMATHCrossRef Röhrl, H.: A theorem on non-associative algebras and its application to differential equations. Manuscr. Math. 21(2), 181–187 (1977) MathSciNetMATHCrossRef
38.
Zurück zum Zitat Saupe, A.: Disclinations and properties of the directorfield in nematic and cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 21, 211–238 (1973) CrossRef Saupe, A.: Disclinations and properties of the directorfield in nematic and cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 21, 211–238 (1973) CrossRef
39.
Zurück zum Zitat Sonnet, A.M., Virga, E.G.: Reorientational dynamics of conjugated nematic point defects. Liq. Cryst. 37, 785–797 (2010) CrossRef Sonnet, A.M., Virga, E.G.: Reorientational dynamics of conjugated nematic point defects. Liq. Cryst. 37, 785–797 (2010) CrossRef
40.
Zurück zum Zitat Stewart, I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals. Taylor & Francis, London (2004) Stewart, I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals. Taylor & Francis, London (2004)
41.
Zurück zum Zitat Stoker, J.J.: Differential Geometry. Pure and Applied Mathematics, vol. XX. Wiley-Interscience, New York (1969) MATH Stoker, J.J.: Differential Geometry. Pure and Applied Mathematics, vol. XX. Wiley-Interscience, New York (1969) MATH
42.
Zurück zum Zitat Tang, X., Selinger, J.V.: Orientation of topological defects in 2D nematic liquid crystals. Soft Matter 13, 5481–5490 (2017) ADSCrossRef Tang, X., Selinger, J.V.: Orientation of topological defects in 2D nematic liquid crystals. Soft Matter 13, 5481–5490 (2017) ADSCrossRef
43.
Zurück zum Zitat Tolédano, P., Dmitriev, V.: Reconstructive Phase Transitions in Crystals and Quasicrystals. World Scientific, Singapore (1996) CrossRef Tolédano, P., Dmitriev, V.: Reconstructive Phase Transitions in Crystals and Quasicrystals. World Scientific, Singapore (1996) CrossRef
44.
Zurück zum Zitat Truesdell, C.A.: A First Course in Rational Continuum Mechanics. Academic Press, Boston (1977). A second edition, corrected, revised, and augmented, was published by the same Publisher in 1991 MATH Truesdell, C.A.: A First Course in Rational Continuum Mechanics. Academic Press, Boston (1977). A second edition, corrected, revised, and augmented, was published by the same Publisher in 1991 MATH
46.
Zurück zum Zitat Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, Boston (1982) MATH Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, Boston (1982) MATH
47.
Zurück zum Zitat Virga, E.G.: Variational Theories for Liquid Crystals. Chapman & Hall, London (1994) MATHCrossRef Virga, E.G.: Variational Theories for Liquid Crystals. Chapman & Hall, London (1994) MATHCrossRef
48.
Zurück zum Zitat Virga, E.G.: Octupolar order in two dimensions. Eur. Phys. J. E 38(6), 1–7 (2015) CrossRef Virga, E.G.: Octupolar order in two dimensions. Eur. Phys. J. E 38(6), 1–7 (2015) CrossRef
49.
Zurück zum Zitat Vromans, A.J., Giomi, L.: Orientational properties of nematic disclinations. Soft Matter 12, 6490–6495 (2016) ADSCrossRef Vromans, A.J., Giomi, L.: Orientational properties of nematic disclinations. Soft Matter 12, 6490–6495 (2016) ADSCrossRef
50.
Zurück zum Zitat Walcher, S.: Algebras and Differential Equations. Hadronic Press, Palm Harbor (1991) MATH Walcher, S.: Algebras and Differential Equations. Hadronic Press, Palm Harbor (1991) MATH
51.
Zurück zum Zitat Walcher, S.: Eigenvectors of tensors (2017). Talk given at GSD2017 Conference Walcher, S.: Eigenvectors of tensors (2017). Talk given at GSD2017 Conference
53.
Zurück zum Zitat Wergifosse, M., Liégeois, V., Champagne, B.: Evaluation of the molecular static and dynamic first hyperpolarizabilities. Int. J. Quant. Chem. 114(14), 900–910 (2014) CrossRef Wergifosse, M., Liégeois, V., Champagne, B.: Evaluation of the molecular static and dynamic first hyperpolarizabilities. Int. J. Quant. Chem. 114(14), 900–910 (2014) CrossRef
54.
Zurück zum Zitat Zyss, J., Ledoux, I.: Nonlinear optics in multipolar media: theory and experiments. Chem. Rev. 94(1), 77–105 (1994) CrossRef Zyss, J., Ledoux, I.: Nonlinear optics in multipolar media: theory and experiments. Chem. Rev. 94(1), 77–105 (1994) CrossRef
Metadaten
Titel
The Symmetries of Octupolar Tensors
verfasst von
Giuseppe Gaeta
Epifanio G. Virga
Publikationsdatum
14.01.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1-2/2019
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-09722-8

Weitere Artikel der Ausgabe 1-2/2019

Journal of Elasticity 1-2/2019 Zur Ausgabe

OriginalPaper

Material Geometry

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.