Skip to main content
Erschienen in:

26.10.2022 | Technical Article

The Synthesis and Crystal Phase Evolution of SiO2-Stabilized Zirconia Nanocomposites at Low Temperatures for the Production of Zircon

verfasst von: Sepide Akbarpour, Behnam Khoshandam, Samane Maroufi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aims of this paper were to reduce the operating temperature of SiO2-stabilized zirconia synthesis compared to previous works and produce a practical ZrSiO4 ceramic by the solution combustion method. The analysis of DSC, XRD, FTIR, FE-SEM, TEM, SAED, HR-TEM and Rietveld refinement were used to characterize the resulting products. The results demonstrated that the type and amount of fuels (i.e., urea and glycine) were important factors in self-sustained reaction and crystalline structures of zirconia. A comparison was also done to study the impact of the calcination temperature on the phase evolution of stabilized monoclinic zirconia, obtained 96.67% of m-ZrO2 with crystallite size of 31 nm. Finally, sintering process of m-ZrO2 was applied to synthesize ZrSiO4. The crystallization of ZrSiO4 from the binary system of m-ZrO2 and SiO2 has been the subject of extensive study, commonly obtained with cations at high temperatures. Interestingly, the present study achieved ZrSiO4 without the presence of cation at low temperature, and indicated 79.51% purity with compressive strength and Vickers hardness of 416.38 ± 6.79 MPa and 1143.2 ± 40.2 HV (11.21 ± 0.39 GPa), respectively. Due to appropriate appearance color and excellent mechanical properties of ZrSiO4 synthesized at low-temperature processing, this approach can be promising for the biomedical application.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Patil, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific, 2008. K. Patil, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific, 2008.
2.
Zurück zum Zitat J.R. Kelly and I. Denry, Stabilized Zirconia as a Structural Ceramic: An Overview, Dent. Mater., 2008, 24(3), p 289–298. J.R. Kelly and I. Denry, Stabilized Zirconia as a Structural Ceramic: An Overview, Dent. Mater., 2008, 24(3), p 289–298.
3.
Zurück zum Zitat L. Fu, H. Engqvist and W. Xia, Highly Translucent and Strong ZrO2-SiO2 Nanocrystalline Glass Ceramic Prepared by Sol-Gel Method and Spark Plasma Sintering with fine 3D Microstructure for Dental Restoration, J. Eur. Ceram. Soc., 2017, 37(13), p 4067–4081. L. Fu, H. Engqvist and W. Xia, Highly Translucent and Strong ZrO2-SiO2 Nanocrystalline Glass Ceramic Prepared by Sol-Gel Method and Spark Plasma Sintering with fine 3D Microstructure for Dental Restoration, J. Eur. Ceram. Soc., 2017, 37(13), p 4067–4081.
4.
Zurück zum Zitat J. Jiang, X. Hu, W. Shen, C. Ni and J.L. Hertz, Improved Ionic Conductivity in Strained Yttria-Stabilized Zirconia Thin Films, Appl. Phys. Lett., 2013, 102(14), p 143901. J. Jiang, X. Hu, W. Shen, C. Ni and J.L. Hertz, Improved Ionic Conductivity in Strained Yttria-Stabilized Zirconia Thin Films, Appl. Phys. Lett., 2013, 102(14), p 143901.
5.
Zurück zum Zitat C. Sanchez, P. Belleville, M. Popall and L. Nicole, Applications of Advanced Hybrid Organic–Inorganic Nanomaterials: From Laboratory to Market, Chem. Soc. Rev., 2011, 40(2), p 696–753. C. Sanchez, P. Belleville, M. Popall and L. Nicole, Applications of Advanced Hybrid Organic–Inorganic Nanomaterials: From Laboratory to Market, Chem. Soc. Rev., 2011, 40(2), p 696–753.
6.
Zurück zum Zitat E. Długoń, K. Pach, M. Gawęda, R. Jadach, A. Wajda, M. Leśniak, A. Benko, M. Dziadek, M. Sowa and W. Simka, Anticorrosive ZrO2 and ZrO2-SiO2 Layers on Titanium Substrates for Biomedical Applications, Surf. Coat. Technol., 2017, 331, p 221–229. E. Długoń, K. Pach, M. Gawęda, R. Jadach, A. Wajda, M. Leśniak, A. Benko, M. Dziadek, M. Sowa and W. Simka, Anticorrosive ZrO2 and ZrO2-SiO2 Layers on Titanium Substrates for Biomedical Applications, Surf. Coat. Technol., 2017, 331, p 221–229.
7.
Zurück zum Zitat R. Pessoa, M. Cerqueira, R. Nasar and I. Yoshida, Synthesis of Stabilized Zirconia Without Dopants, Cerâmica, 2008, 54(330), p 253–258. R. Pessoa, M. Cerqueira, R. Nasar and I. Yoshida, Synthesis of Stabilized Zirconia Without Dopants, Cerâmica, 2008, 54(330), p 253–258.
8.
Zurück zum Zitat L. Fu, C. Wu, K. Grandfield, E. Unosson, J. Chang, H. Engqvist and W. Xia, Transparent Single Crystalline ZrO2-SiO2 Glass Nanoceramic Sintered by SPS, J. Eur. Ceram. Soc., 2016, 36(14), p 3487–3494. L. Fu, C. Wu, K. Grandfield, E. Unosson, J. Chang, H. Engqvist and W. Xia, Transparent Single Crystalline ZrO2-SiO2 Glass Nanoceramic Sintered by SPS, J. Eur. Ceram. Soc., 2016, 36(14), p 3487–3494.
9.
Zurück zum Zitat F. Ciesielczyk, J. Goscianska, J. Zdarta and T. Jesionowski, The Development of Zirconia/Silica Hybrids for the Adsorption and Controlled Release of Active Pharmaceutical Ingredients, Colloids Surf. A, 2018, 545, p 39–50. F. Ciesielczyk, J. Goscianska, J. Zdarta and T. Jesionowski, The Development of Zirconia/Silica Hybrids for the Adsorption and Controlled Release of Active Pharmaceutical Ingredients, Colloids Surf. A, 2018, 545, p 39–50.
10.
Zurück zum Zitat E. Tranquillo, F. Barrino, G. Dal Poggetto and I. Blanco, Sol-Gel Synthesis of Silica-Based Materials with Different Percentages of PEG or PCL and High Chlorogenic Acid Content, Materials, 2019, 12(1), p 155. E. Tranquillo, F. Barrino, G. Dal Poggetto and I. Blanco, Sol-Gel Synthesis of Silica-Based Materials with Different Percentages of PEG or PCL and High Chlorogenic Acid Content, Materials, 2019, 12(1), p 155.
11.
Zurück zum Zitat M. Catauro, A. Dell’Era and S. Vecchio Ciprioti, Synthesis, Structural, Spectroscopic and Thermoanalytical Study of Sol–Gel Derived SiO2–CaO–P2O5 Gel and Ceramic Materials, Thermochim. Acta, 2016, 625, p 20–27. M. Catauro, A. Dell’Era and S. Vecchio Ciprioti, Synthesis, Structural, Spectroscopic and Thermoanalytical Study of Sol–Gel Derived SiO2–CaO–P2O5 Gel and Ceramic Materials, Thermochim. Acta, 2016, 625, p 20–27.
12.
Zurück zum Zitat A. Śmieszek, A. Donesz-Sikorska, J. Grzesiak, J. Krzak and K. Marycz, Biological Effects Of Sol–Gel Derived ZrO2 and SiO2/ZrO2 Coatings on Stainless Steel Surface—In Vitro Model Using Mesenchymal Stem Cells, J. Biomater. Appl., 2014, 29(5), p 699–714. A. Śmieszek, A. Donesz-Sikorska, J. Grzesiak, J. Krzak and K. Marycz, Biological Effects Of Sol–Gel Derived ZrO2 and SiO2/ZrO2 Coatings on Stainless Steel Surface—In Vitro Model Using Mesenchymal Stem Cells, J. Biomater. Appl., 2014, 29(5), p 699–714.
13.
Zurück zum Zitat G. Guo, Y. Fan, J.-F. Zhang, J.L. Hagan and X. Xu, Novel Dental Composites Reinforced with Zirconia–Silica Ceramic Nanofibers, Dent. Mater., 2012, 28(4), p 360–368. G. Guo, Y. Fan, J.-F. Zhang, J.L. Hagan and X. Xu, Novel Dental Composites Reinforced with Zirconia–Silica Ceramic Nanofibers, Dent. Mater., 2012, 28(4), p 360–368.
14.
Zurück zum Zitat M. Morks and A. Kobayashi, Development of ZrO2/SiO2 Bioinert Ceramic Coatings for Biomedical Application, J. Mech. Behav. Biomed. Mater., 2008, 1(2), p 165–171. M. Morks and A. Kobayashi, Development of ZrO2/SiO2 Bioinert Ceramic Coatings for Biomedical Application, J. Mech. Behav. Biomed. Mater., 2008, 1(2), p 165–171.
15.
Zurück zum Zitat M. Farhadian, K. Raeissi, M. Golozar, S. Labbaf, T. Hajilou and A. Barnoush, 3D-Focused Ion Beam Tomography and Quantitative Porosity Evaluation of ZrO2-SiO2 Composite Coating; Amorphous SiO2 as a Porosity Tailoring Agent, Appl. Surf. Sci., 2020, 511, p 145567. M. Farhadian, K. Raeissi, M. Golozar, S. Labbaf, T. Hajilou and A. Barnoush, 3D-Focused Ion Beam Tomography and Quantitative Porosity Evaluation of ZrO2-SiO2 Composite Coating; Amorphous SiO2 as a Porosity Tailoring Agent, Appl. Surf. Sci., 2020, 511, p 145567.
16.
Zurück zum Zitat D. Choi and K.-L. Choy, Novel Nanostructured SiO2/ZrO2 Based Electrodes with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Electrochim. Acta, 2016, 218, p 47–53. D. Choi and K.-L. Choy, Novel Nanostructured SiO2/ZrO2 Based Electrodes with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Electrochim. Acta, 2016, 218, p 47–53.
17.
Zurück zum Zitat H. Yoshida, M. Chaskar, Y. Kato and T. Hattori, Active Sites on Silica-Supported Zirconium Oxide for Photoinduced Direct Methane Conversion and Photoluminescence, J. Photochem. Photobiol. A, 2003, 160(1–2), p 47–53. H. Yoshida, M. Chaskar, Y. Kato and T. Hattori, Active Sites on Silica-Supported Zirconium Oxide for Photoinduced Direct Methane Conversion and Photoluminescence, J. Photochem. Photobiol. A, 2003, 160(1–2), p 47–53.
18.
Zurück zum Zitat M. Mahdavi and A. Ghiasi, Abrasion Resistance of Ceramic Thin Films of ZrO2/SiO2 on stretched Grade Polymethyl Methacrylate Substrates, Ceram. Int., 2016, 42(6), p 7203–7209. M. Mahdavi and A. Ghiasi, Abrasion Resistance of Ceramic Thin Films of ZrO2/SiO2 on stretched Grade Polymethyl Methacrylate Substrates, Ceram. Int., 2016, 42(6), p 7203–7209.
19.
Zurück zum Zitat G.K. Reddy, S. Loridant, A. Takahashi, P. Delichère and B.M. Reddy, Reforming of Methane with Carbon Dioxide Over Pt/ZrO2/SiO2 Catalysts—Effect of Zirconia to Silica Ratio, Appl. Catal. A, 2010, 389(1–2), p 92–100. G.K. Reddy, S. Loridant, A. Takahashi, P. Delichère and B.M. Reddy, Reforming of Methane with Carbon Dioxide Over Pt/ZrO2/SiO2 Catalysts—Effect of Zirconia to Silica Ratio, Appl. Catal. A, 2010, 389(1–2), p 92–100.
20.
Zurück zum Zitat L.O. Alemán-Vázquez, J.L. Cano-Domínguez, E. Torres-García and J.R. Villagómez-Ibarra, Industrial Aplication of Catalytic Systems for n-Heptane Isomerization, Molecules, 2011, 16(7), p 5916–5927. L.O. Alemán-Vázquez, J.L. Cano-Domínguez, E. Torres-García and J.R. Villagómez-Ibarra, Industrial Aplication of Catalytic Systems for n-Heptane Isomerization, Molecules, 2011, 16(7), p 5916–5927.
21.
Zurück zum Zitat M. Morandin, R. Gavagnin, F. Pinna and G. Strukul, Oxidation of Cyclohexene with Hydrogen Peroxide Using Zirconia-Silica Mixed Oxides: Control of the Surface Hydrophilicity and Influence on the Activity of the Catalyst and Hydrogen Peroxide Efficiency, J. Catal., 2002, 212(2), p 193–200. M. Morandin, R. Gavagnin, F. Pinna and G. Strukul, Oxidation of Cyclohexene with Hydrogen Peroxide Using Zirconia-Silica Mixed Oxides: Control of the Surface Hydrophilicity and Influence on the Activity of the Catalyst and Hydrogen Peroxide Efficiency, J. Catal., 2002, 212(2), p 193–200.
22.
Zurück zum Zitat Z. Dang, B. Anderson, Y. Amenomiya and B. Morrow, Silica-Supported Zirconia. 1. Characterization by Infrared Spectroscopy, Temperature-Programmed Desorption, and X-Ray Diffraction, J. Phys. Chem., 1995, 99(39), p 14437–14443. Z. Dang, B. Anderson, Y. Amenomiya and B. Morrow, Silica-Supported Zirconia. 1. Characterization by Infrared Spectroscopy, Temperature-Programmed Desorption, and X-Ray Diffraction, J. Phys. Chem., 1995, 99(39), p 14437–14443.
23.
Zurück zum Zitat C.I. Odenbrand, S. Lars, T. Andersson, L.A. Andersson, J.G. Brandin and G. Busca, Characterization of Silica-Titania Mixed Oxides, J. Catal., 1990, 125(2), p 541–553. C.I. Odenbrand, S. Lars, T. Andersson, L.A. Andersson, J.G. Brandin and G. Busca, Characterization of Silica-Titania Mixed Oxides, J. Catal., 1990, 125(2), p 541–553.
24.
Zurück zum Zitat S. Sato, R. Takahashi, T. Sodesawa, S. Tanaka, K. Oguma and K. Ogura, High-Surface-Area SiO2–ZrO2 Prepared by Depositing Silica on Zirconia in Aqueous Ammonia Solution, J. Catal., 2000, 196(1), p 190–194. S. Sato, R. Takahashi, T. Sodesawa, S. Tanaka, K. Oguma and K. Ogura, High-Surface-Area SiO2–ZrO2 Prepared by Depositing Silica on Zirconia in Aqueous Ammonia Solution, J. Catal., 2000, 196(1), p 190–194.
25.
Zurück zum Zitat R. Piticescu, C. Monty and D. Millers, Hydrothermal Synthesis of Nanostructured Zirconia Materials: Present State and Future Prospects, Sens. Actuators B Chem., 2005, 109(1), p 102–106. R. Piticescu, C. Monty and D. Millers, Hydrothermal Synthesis of Nanostructured Zirconia Materials: Present State and Future Prospects, Sens. Actuators B Chem., 2005, 109(1), p 102–106.
26.
Zurück zum Zitat Y. Ding, Y. Li, Z. Jiang, J. Li, Y. Tang, H. Dan, H. Zhang and T. Duan, Phase Evolution and Chemical Stability of the Nd2O3-ZrO2-SiO2 System Synthesized by a Novel Hydrothermal-Assisted Sol-Gel Process, J. Nucl. Mater., 2018, 510, p 10–18. Y. Ding, Y. Li, Z. Jiang, J. Li, Y. Tang, H. Dan, H. Zhang and T. Duan, Phase Evolution and Chemical Stability of the Nd2O3-ZrO2-SiO2 System Synthesized by a Novel Hydrothermal-Assisted Sol-Gel Process, J. Nucl. Mater., 2018, 510, p 10–18.
27.
Zurück zum Zitat Q. Zhuang and J.M. Miller, One-Pot Sol-Gel Synthesis of Sulfated ZrO2-SiO2 Catalysts for Alcohol Dehydration, Can. J. Chem., 2001, 79(8), p 1220–1223. Q. Zhuang and J.M. Miller, One-Pot Sol-Gel Synthesis of Sulfated ZrO2-SiO2 Catalysts for Alcohol Dehydration, Can. J. Chem., 2001, 79(8), p 1220–1223.
28.
Zurück zum Zitat A. Kumar, S. Singhal, S. Aggarwal, R.P. Badoni and A.K. Sharma, Influence of Synthetic Approach of SiO2-ZrO2 Materials, Catal. Sustain. Energy, 2018, 5(1), p 34–40. A. Kumar, S. Singhal, S. Aggarwal, R.P. Badoni and A.K. Sharma, Influence of Synthetic Approach of SiO2-ZrO2 Materials, Catal. Sustain. Energy, 2018, 5(1), p 34–40.
29.
Zurück zum Zitat J. Li, H.-F. Zhang and Y.-P. Shi, In-situ Synthesis and Normal Chromatographic Properties of Nonporous SiO2/ZrO2 Core-shell Composite Microspheres, Anal. Sci., 2011, 27(4), p 447–447. J. Li, H.-F. Zhang and Y.-P. Shi, In-situ Synthesis and Normal Chromatographic Properties of Nonporous SiO2/ZrO2 Core-shell Composite Microspheres, Anal. Sci., 2011, 27(4), p 447–447.
30.
Zurück zum Zitat X. Hou, R. Zhang and B. Wang, Novel Self-Reinforcing ZrO2–SiO2 Aerogels with High Mechanical Strength and Ultralow Thermal Conductivity, Ceram. Int., 2018, 44(13), p 15440–15445. X. Hou, R. Zhang and B. Wang, Novel Self-Reinforcing ZrO2–SiO2 Aerogels with High Mechanical Strength and Ultralow Thermal Conductivity, Ceram. Int., 2018, 44(13), p 15440–15445.
31.
Zurück zum Zitat M. Karpe, G. Mezinskis and L. Timma, Synthesis of Nanoporous SiO2-TiO2-ZrO2 Ceramics Using Sol-gel Technology, Mater. Sci. Appl. Chem., 2014, 30, p 55–62. M. Karpe, G. Mezinskis and L. Timma, Synthesis of Nanoporous SiO2-TiO2-ZrO2 Ceramics Using Sol-gel Technology, Mater. Sci. Appl. Chem., 2014, 30, p 55–62.
32.
Zurück zum Zitat X. Yang, W. Qing, C. Feng, M. Yin-Wei and Q. Dong-Liang, Sol-Gel Process and High-Temperature Property of SiO2/ZrO2-SiO2 Composites, Ceram. Int., 2017, 43(1), p 854–859. X. Yang, W. Qing, C. Feng, M. Yin-Wei and Q. Dong-Liang, Sol-Gel Process and High-Temperature Property of SiO2/ZrO2-SiO2 Composites, Ceram. Int., 2017, 43(1), p 854–859.
34.
Zurück zum Zitat M. Szutkowska, Fracture Resistance Behavior of Alumina–Zirconia Composites, J. Mater. Process. Technol., 2004, 153, p 868–874. M. Szutkowska, Fracture Resistance Behavior of Alumina–Zirconia Composites, J. Mater. Process. Technol., 2004, 153, p 868–874.
35.
Zurück zum Zitat J. Eichler, U. Eisele and J. Rödel, Mechanical Properties of Monoclinic Zirconia, J. Am. Ceram. Soc., 2004, 87(7), p 1401–1403. J. Eichler, U. Eisele and J. Rödel, Mechanical Properties of Monoclinic Zirconia, J. Am. Ceram. Soc., 2004, 87(7), p 1401–1403.
36.
Zurück zum Zitat P.A. Langjahr, R. Oberacker and M.J. Hoffmann, Long-Term Behavior and Application Limits of Plasma-Sprayed Zirconia Thermal Barrier Coatings, J. Am. Ceram. Soc., 2001, 84(6), p 1301–1308. P.A. Langjahr, R. Oberacker and M.J. Hoffmann, Long-Term Behavior and Application Limits of Plasma-Sprayed Zirconia Thermal Barrier Coatings, J. Am. Ceram. Soc., 2001, 84(6), p 1301–1308.
37.
Zurück zum Zitat M.G. Botelho, S. Dangay, K. Shih and W.Y. Lam, The Effect of Surface Treatments on Dental Zirconia: An Analysis of Biaxial Flexural Strength, Surface Roughness and Phase Transformation, J. Dent., 2018, 75, p 65–73. M.G. Botelho, S. Dangay, K. Shih and W.Y. Lam, The Effect of Surface Treatments on Dental Zirconia: An Analysis of Biaxial Flexural Strength, Surface Roughness and Phase Transformation, J. Dent., 2018, 75, p 65–73.
38.
Zurück zum Zitat S. Bhaduri, S. Bhaduri and E. Zhou, Auto Ignition Synthesis and Consolidation of Al2O3–ZrO2 Nano/Nano Composite Powders, J. Mater. Res., 1998, 13(1), p 156–165. S. Bhaduri, S. Bhaduri and E. Zhou, Auto Ignition Synthesis and Consolidation of Al2O3–ZrO2 Nano/Nano Composite Powders, J. Mater. Res., 1998, 13(1), p 156–165.
39.
Zurück zum Zitat A.S. Mukasyan, C. Costello, K.P. Sherlock, D. Lafarga and A. Varma, Perovskite Membranes by Aqueous Combustion Synthesis: Synthesis and Properties, Sep. Purif. Technol., 2001, 25(1–3), p 117–126. A.S. Mukasyan, C. Costello, K.P. Sherlock, D. Lafarga and A. Varma, Perovskite Membranes by Aqueous Combustion Synthesis: Synthesis and Properties, Sep. Purif. Technol., 2001, 25(1–3), p 117–126.
40.
Zurück zum Zitat A. Varma, A.S. Mukasyan, K.T. Deshpande, P. Pranda, P.R. Erri, Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties. MRS Online Proc. Library Arch. 800 (2003) A. Varma, A.S. Mukasyan, K.T. Deshpande, P. Pranda, P.R. Erri, Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties. MRS Online Proc. Library Arch. 800 (2003)
41.
Zurück zum Zitat A. Mukasyan and P. Dinka, Novel Approaches to Solution-Combustion Synthesis of Nanomaterials, Int. J. Self Propag. High Temp. Synth., 2007, 16(1), p 23–35. A. Mukasyan and P. Dinka, Novel Approaches to Solution-Combustion Synthesis of Nanomaterials, Int. J. Self Propag. High Temp. Synth., 2007, 16(1), p 23–35.
42.
Zurück zum Zitat S.T. Aruna and A.S. Mukasyan, Combustion Synthesis and Nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, 12(3–4), p 44–50. S.T. Aruna and A.S. Mukasyan, Combustion Synthesis and Nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, 12(3–4), p 44–50.
43.
Zurück zum Zitat A. Varma, A.S. Mukasyan, A.S. Rogachev and K.V. Manukyan, Solution Combustion Synthesis of Nanoscale Materials, Chem. Rev., 2016, 116(23), p 14493–14586. A. Varma, A.S. Mukasyan, A.S. Rogachev and K.V. Manukyan, Solution Combustion Synthesis of Nanoscale Materials, Chem. Rev., 2016, 116(23), p 14493–14586.
44.
Zurück zum Zitat K. Morsi, Reaction Synthesis Processing of Ni–Al Intermetallic Materials, Mater. Sci. Eng. A, 2001, 299(1–2), p 1–15. K. Morsi, Reaction Synthesis Processing of Ni–Al Intermetallic Materials, Mater. Sci. Eng. A, 2001, 299(1–2), p 1–15.
45.
Zurück zum Zitat J. Kishan, V. Mangam, B. Reddy, S. Das and K. Das, Aqueous Combustion Synthesis and Characterization Of Zirconia–Alumina Nanocomposites, J. Alloy. Compd., 2010, 490(1–2), p 631–636. J. Kishan, V. Mangam, B. Reddy, S. Das and K. Das, Aqueous Combustion Synthesis and Characterization Of Zirconia–Alumina Nanocomposites, J. Alloy. Compd., 2010, 490(1–2), p 631–636.
46.
Zurück zum Zitat S.L. González-Cortés and F.E. Imbert, Fundamentals, Properties and Applications of Solid Catalysts Prepared by Solution Combustion Synthesis (SCS), Appl. Catal. A, 2013, 452, p 117–131. S.L. González-Cortés and F.E. Imbert, Fundamentals, Properties and Applications of Solid Catalysts Prepared by Solution Combustion Synthesis (SCS), Appl. Catal. A, 2013, 452, p 117–131.
47.
Zurück zum Zitat K. Tahmasebi and M. Paydar, The Effect of Starch Addition on Solution Combustion Synthesis of Al2O3–ZrO2 Nanocomposite Powder Using Urea as Fuel, Mater. Chem. Phys., 2008, 109(1), p 156–163. K. Tahmasebi and M. Paydar, The Effect of Starch Addition on Solution Combustion Synthesis of Al2O3–ZrO2 Nanocomposite Powder Using Urea as Fuel, Mater. Chem. Phys., 2008, 109(1), p 156–163.
48.
Zurück zum Zitat P.A. Deshpande, S. Polisetti and G. Madras, Rapid Synthesis of Ultrahigh Adsorption Capacity Zirconia by a Solution Combustion Technique, Langmuir, 2011, 27(7), p 3578–3587. P.A. Deshpande, S. Polisetti and G. Madras, Rapid Synthesis of Ultrahigh Adsorption Capacity Zirconia by a Solution Combustion Technique, Langmuir, 2011, 27(7), p 3578–3587.
49.
Zurück zum Zitat G. Lascalea, D. Lamas, L. Pérez, E. Cabanillas and N.W. de Reca, Synthesis of ZrO2–15 mol% CeO2 Nanopowders by a pH-Controlled Nitrate–Glycine Process, Mater. Lett., 2004, 58(20), p 2456–2460. G. Lascalea, D. Lamas, L. Pérez, E. Cabanillas and N.W. de Reca, Synthesis of ZrO2–15 mol% CeO2 Nanopowders by a pH-Controlled Nitrate–Glycine Process, Mater. Lett., 2004, 58(20), p 2456–2460.
50.
Zurück zum Zitat I.O. Fabregas and D.G. Lamas, Parametric Study of the Gel-Combustion Synthesis of Nanocrystalline ZrO2-Based Powders, Powder Technol., 2011, 214(2), p 218–228. I.O. Fabregas and D.G. Lamas, Parametric Study of the Gel-Combustion Synthesis of Nanocrystalline ZrO2-Based Powders, Powder Technol., 2011, 214(2), p 218–228.
51.
Zurück zum Zitat E.I. Denisova, I.A. Ustyuzhaninova, V.V. Kartashov, V.A. Volkovich, I.V. Chernetskiy and A.V. Vlasov, Glycine-Nitrate Combustion Synthesis of ZrO2-Y2O3 Nanopowders, Adv. Mater. Res., 2015, 1103, p 37–43. E.I. Denisova, I.A. Ustyuzhaninova, V.V. Kartashov, V.A. Volkovich, I.V. Chernetskiy and A.V. Vlasov, Glycine-Nitrate Combustion Synthesis of ZrO2-Y2O3 Nanopowders, Adv. Mater. Res., 2015, 1103, p 37–43.
52.
Zurück zum Zitat A.M. Saleem, S. Rajasekar, K. Kaviyarasu, R. Perumalsamy, A. Ayeshamariam, M. Jayachandran, Green Combustion Synthesis of CeO2 and TiO2 Nanoparticles Doped with Same Oxide Materials of ZrO2: Investigation of in vitro Assay with Antibiotic Resistant Bacterium (ARB) and Anticancer Effect. Eur. Med. Plants 1–17 (2019) A.M. Saleem, S. Rajasekar, K. Kaviyarasu, R. Perumalsamy, A. Ayeshamariam, M. Jayachandran, Green Combustion Synthesis of CeO2 and TiO2 Nanoparticles Doped with Same Oxide Materials of ZrO2: Investigation of in vitro Assay with Antibiotic Resistant Bacterium (ARB) and Anticancer Effect. Eur. Med. Plants 1–17 (2019)
53.
Zurück zum Zitat S.M. Hashemi, D. Karami and N. Mahinpey, Solution Combustion Synthesis of Zirconia-Stabilized Calcium Oxide Sorbents for CO2 Capture, Fuel, 2020, 269, p 117432. S.M. Hashemi, D. Karami and N. Mahinpey, Solution Combustion Synthesis of Zirconia-Stabilized Calcium Oxide Sorbents for CO2 Capture, Fuel, 2020, 269, p 117432.
54.
Zurück zum Zitat R. Juarez, D. Lamas, G. Lascalea and N.W. De Reca, Synthesis of Nanocrystalline Zirconia Powders for TZP Ceramics by a Nitrate–Citrate Combustion Route, J. Eur. Ceram. Soc., 2000, 20(2), p 133–138. R. Juarez, D. Lamas, G. Lascalea and N.W. De Reca, Synthesis of Nanocrystalline Zirconia Powders for TZP Ceramics by a Nitrate–Citrate Combustion Route, J. Eur. Ceram. Soc., 2000, 20(2), p 133–138.
55.
Zurück zum Zitat K. Singh, L. Pathak and S. Roy, Effect of Citric Acid on the Synthesis of Nano-Crystalline Yttria Stabilized Zirconia Powders by Nitrate–Citrate Process, Ceram. Int., 2007, 33(8), p 1463–1468. K. Singh, L. Pathak and S. Roy, Effect of Citric Acid on the Synthesis of Nano-Crystalline Yttria Stabilized Zirconia Powders by Nitrate–Citrate Process, Ceram. Int., 2007, 33(8), p 1463–1468.
56.
Zurück zum Zitat V.B. Raghavendra, S. Naik, M. Antony, G. Ramalingam, M. Rajamathi and S. Raghavan, Amorphous, Monoclinic, and Tetragonal Porous Zirconia Through a Controlled Self-Sustained Combustion Route, J. Am. Ceram. Soc., 2011, 94(6), p 1747–1755. V.B. Raghavendra, S. Naik, M. Antony, G. Ramalingam, M. Rajamathi and S. Raghavan, Amorphous, Monoclinic, and Tetragonal Porous Zirconia Through a Controlled Self-Sustained Combustion Route, J. Am. Ceram. Soc., 2011, 94(6), p 1747–1755.
57.
Zurück zum Zitat F. del Monte, W. Larsen and J.D. Mackenzie, Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides, J. Am. Ceram. Soc., 2000, 83(3), p 628–634. F. del Monte, W. Larsen and J.D. Mackenzie, Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides, J. Am. Ceram. Soc., 2000, 83(3), p 628–634.
58.
Zurück zum Zitat D. Padovini, A. Magdalena, R. Capeli, E. Longo, C. Dalmaschio, A. Chiquito and F. Pontes, Synthesis and Characterization of ZrO2@ SiO2 Core-Shell Nanostructure as Nanocatalyst: Application for Environmental Remediation of Rhodamine B Dye Aqueous Solution, Mater. Chem. Phys., 2019, 233, p 1–8. D. Padovini, A. Magdalena, R. Capeli, E. Longo, C. Dalmaschio, A. Chiquito and F. Pontes, Synthesis and Characterization of ZrO2@ SiO2 Core-Shell Nanostructure as Nanocatalyst: Application for Environmental Remediation of Rhodamine B Dye Aqueous Solution, Mater. Chem. Phys., 2019, 233, p 1–8.
59.
Zurück zum Zitat B. Tyagi, K.B. Sidhpuria, B. Shaik and R.V. Jasra, Effect of Zr/Si molar Ratio and Sulfation on Structural and Catalytic Properties of ZrO2–SiO2 Mixed Oxides, J. Porous Mater., 2010, 17(6), p 699–709. B. Tyagi, K.B. Sidhpuria, B. Shaik and R.V. Jasra, Effect of Zr/Si molar Ratio and Sulfation on Structural and Catalytic Properties of ZrO2–SiO2 Mixed Oxides, J. Porous Mater., 2010, 17(6), p 699–709.
60.
Zurück zum Zitat J. Li, Z. Wang, X. Yang, L. Hu, Y. Liu and C. Wang, Evaluate the Pyrolysis Pathway of Glycine and Glycylglycine by TG–FTIR, J. Anal. Appl. Pyrol., 2007, 80(1), p 247–253. J. Li, Z. Wang, X. Yang, L. Hu, Y. Liu and C. Wang, Evaluate the Pyrolysis Pathway of Glycine and Glycylglycine by TG–FTIR, J. Anal. Appl. Pyrol., 2007, 80(1), p 247–253.
61.
Zurück zum Zitat K.-M. Hansson, L.-E. Åmand, A. Habermann and F. Winter, Pyrolysis of Poly-l-leucine Under Combustion-like Conditions☆, Fuel, 2003, 82(6), p 653–660. K.-M. Hansson, L.-E. Åmand, A. Habermann and F. Winter, Pyrolysis of Poly-l-leucine Under Combustion-like Conditions☆, Fuel, 2003, 82(6), p 653–660.
62.
Zurück zum Zitat R. Back and J. Childs, Pyrolysis of HNCO Vapor, Can. J. Chem., 1968, 46(6), p 1023–1024. R. Back and J. Childs, Pyrolysis of HNCO Vapor, Can. J. Chem., 1968, 46(6), p 1023–1024.
63.
Zurück zum Zitat A. Majumdar, S.C. Das, T. Shripathi and R. Hippler, Chemical Synthesis and Surface Morphology of Amorphous Hydrogenated Carbon Nitride Film Deposited by N2/CH4 dielectric Barrier Discharge Plasma, Compos. Interfaces, 2012, 19(3–4), p 161–170. A. Majumdar, S.C. Das, T. Shripathi and R. Hippler, Chemical Synthesis and Surface Morphology of Amorphous Hydrogenated Carbon Nitride Film Deposited by N2/CH4 dielectric Barrier Discharge Plasma, Compos. Interfaces, 2012, 19(3–4), p 161–170.
64.
Zurück zum Zitat S.M. Kurtz and K. Ong, Contemporary Total Hip Arthroplasty: Alternative Bearings, UHMWPE Biomaterials Handbooked, Elsevier, 2016, p 72–105 S.M. Kurtz and K. Ong, Contemporary Total Hip Arthroplasty: Alternative Bearings, UHMWPE Biomaterials Handbooked, Elsevier, 2016, p 72–105
65.
Zurück zum Zitat S. Ardizzone, G. Cappelletti, P. Fermo, C. Oliva, M. Scavini and F. Scime, Structural and Spectroscopic Investigations of Blue, Vanadium-Doped ZrSiO4 Pigments Prepared by a Sol−Gel Route, J. Phys. Chem. B, 2005, 109(47), p 22112–22119. S. Ardizzone, G. Cappelletti, P. Fermo, C. Oliva, M. Scavini and F. Scime, Structural and Spectroscopic Investigations of Blue, Vanadium-Doped ZrSiO4 Pigments Prepared by a Sol−Gel Route, J. Phys. Chem. B, 2005, 109(47), p 22112–22119.
66.
Zurück zum Zitat R. Udaykiran, S. Vasanthavel and S. Kannan, Coordinative Crystallization of ZrSiO4 and α-Fe2O3 Composites and Their Resultant Structural, Morphological, and Mechanical Characteristics, Cryst. Growth Des., 2015, 15(8), p 4075–4086. R. Udaykiran, S. Vasanthavel and S. Kannan, Coordinative Crystallization of ZrSiO4 and α-Fe2O3 Composites and Their Resultant Structural, Morphological, and Mechanical Characteristics, Cryst. Growth Des., 2015, 15(8), p 4075–4086.
67.
Zurück zum Zitat A.K. Yadav, V. Ponnilavan and S. Kannan, Crystallization of ZrSiO4 from a SiO2–ZrO2 Binary System: The Concomitant Effects of Heat Treatment Temperature and TiO2 Additions, Cryst. Growth Des., 2016, 16(9), p 5493–5500. A.K. Yadav, V. Ponnilavan and S. Kannan, Crystallization of ZrSiO4 from a SiO2–ZrO2 Binary System: The Concomitant Effects of Heat Treatment Temperature and TiO2 Additions, Cryst. Growth Des., 2016, 16(9), p 5493–5500.
68.
Zurück zum Zitat W. Zhang, Q. Wang, X. Chen, X. Li, Q. Long, C. Wang, K. Liu, Y. Wang and Q. Chang, Synthesis of High Color Performance V-ZrSiO4 Blue Pigment with Low Doping Amount via Inorganic Sol–Gel Route, Adv. Powder Technol., 2021, 32(9), p 3355–3363. W. Zhang, Q. Wang, X. Chen, X. Li, Q. Long, C. Wang, K. Liu, Y. Wang and Q. Chang, Synthesis of High Color Performance V-ZrSiO4 Blue Pigment with Low Doping Amount via Inorganic Sol–Gel Route, Adv. Powder Technol., 2021, 32(9), p 3355–3363.
69.
Zurück zum Zitat S. Lan, Q. Hu, Q. Zhao, W. Jiang, J. Liu, G. Feng, F. Jiang, H. Tang and J. Chen, Synthesis and Characterization of Mn-Doped C@ ZrSiO4 Black Pigment via Non-Hydrolytic Sol-Gel Method, Adv. Powder Technol., 2021, 32(8), p 2940–2949. S. Lan, Q. Hu, Q. Zhao, W. Jiang, J. Liu, G. Feng, F. Jiang, H. Tang and J. Chen, Synthesis and Characterization of Mn-Doped C@ ZrSiO4 Black Pigment via Non-Hydrolytic Sol-Gel Method, Adv. Powder Technol., 2021, 32(8), p 2940–2949.
70.
Zurück zum Zitat S. Akbarpour, B. Khoshandam and S. Maroufi, Effect of V Additive on the Crystallization of Zircon via SCS Method: Synthesis, Characterization and Reaction Mechanism, Chem. Phys. Lett., 2021, 762, p 138119. S. Akbarpour, B. Khoshandam and S. Maroufi, Effect of V Additive on the Crystallization of Zircon via SCS Method: Synthesis, Characterization and Reaction Mechanism, Chem. Phys. Lett., 2021, 762, p 138119.
71.
Zurück zum Zitat T. Mori, H. Yamamura, H. Kobayashi and T. Mitamura, Preparation of High-Purity ZrSiO4 Powder Using Sol-Gel Processing and Mechanical Properties of the Sintered Body, J. Am. Ceram. Soc., 1992, 75(9), p 2420–2426. T. Mori, H. Yamamura, H. Kobayashi and T. Mitamura, Preparation of High-Purity ZrSiO4 Powder Using Sol-Gel Processing and Mechanical Properties of the Sintered Body, J. Am. Ceram. Soc., 1992, 75(9), p 2420–2426.
72.
Zurück zum Zitat Y. Shi, X. Huang and D. Yan, Fabrication of Hot-Pressed Zircon Ceramics: Mechanical Properties and Microstructure, Ceram. Int., 1997, 23(5), p 457–462. Y. Shi, X. Huang and D. Yan, Fabrication of Hot-Pressed Zircon Ceramics: Mechanical Properties and Microstructure, Ceram. Int., 1997, 23(5), p 457–462.
73.
Zurück zum Zitat H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory and H.R. Baharvandi, Improvement in Physical and Mechanical Properties of Aluminum/Zircon Composites Fabricated by Powder Metallurgy Method, Mater. Des., 2011, 32(8–9), p 4417–4423. H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory and H.R. Baharvandi, Improvement in Physical and Mechanical Properties of Aluminum/Zircon Composites Fabricated by Powder Metallurgy Method, Mater. Des., 2011, 32(8–9), p 4417–4423.
74.
Zurück zum Zitat M. Zawrah, R.S. Farag and M. Kohail, Improvement of Physical and Mechanical Properties of Geopolymer Through Addition of Zircon, Mater. Chem. Phys., 2018, 217, p 90–97. M. Zawrah, R.S. Farag and M. Kohail, Improvement of Physical and Mechanical Properties of Geopolymer Through Addition of Zircon, Mater. Chem. Phys., 2018, 217, p 90–97.
75.
Zurück zum Zitat L. Kljajević, M. Nenadović, M. Petković, D. Bučevac, V. Pavlović, N.M. Nikolić, S. Nenadović, Physico-Chemical and Mechanical Properties of Geopolymer/Zircon Composites. Sci. Sinter. 54(1), 11–24 (2022) L. Kljajević, M. Nenadović, M. Petković, D. Bučevac, V. Pavlović, N.M. Nikolić, S. Nenadović, Physico-Chemical and Mechanical Properties of Geopolymer/Zircon Composites. Sci. Sinter. 54(1), 11–24 (2022)
Metadaten
Titel
The Synthesis and Crystal Phase Evolution of SiO2-Stabilized Zirconia Nanocomposites at Low Temperatures for the Production of Zircon
verfasst von
Sepide Akbarpour
Behnam Khoshandam
Samane Maroufi
Publikationsdatum
26.10.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 14/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07554-1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.