Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2021

12.03.2021 | Original Article

The unknown but knowable relationship between Presaccadic Accumulation of activity and Saccade initiation

verfasst von: Jeffrey D. Schall, Martin Paré

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this short review is to call attention to a yawning gap of knowledge that separates two processes essential for saccade production. On the one hand, knowledge about the saccade generation circuitry within the brainstem is detailed and precise – push-pull interactions between gaze-shifting and gaze-holding processes control the time of saccade initiation, which begins when omnipause neurons are inhibited and brainstem burst neurons are excited. On the other hand, knowledge about the cortical and subcortical premotor circuitry accomplishing saccade initiation has crystalized around the concept of stochastic accumulation – the accumulating activity of saccade neurons reaching a fixed value triggers a saccade. Here is the gap: we do not know how the reaching of a threshold by premotor neurons causes the critical pause and burst of brainstem neurons that initiates saccades. Why this problem matters and how it can be addressed will be discussed. Closing the gap would unify two rich but curiously disconnected empirical and theoretical domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antoniades, C. A., & Kennard, C. (2015). Ocular motor abnormalities in neurodegenerative disorders. Eye (Lond)., 29, 200–207.PubMedCrossRef Antoniades, C. A., & Kennard, C. (2015). Ocular motor abnormalities in neurodegenerative disorders. Eye (Lond)., 29, 200–207.PubMedCrossRef
Zurück zum Zitat Barbe, M. T., Monyer, H., & Bruzzone, R. (2006). Cell-cell communication beyond connexins: The pannexin channels. Physiology, 21, 103–114.PubMedCrossRef Barbe, M. T., Monyer, H., & Bruzzone, R. (2006). Cell-cell communication beyond connexins: The pannexin channels. Physiology, 21, 103–114.PubMedCrossRef
Zurück zum Zitat Bergeron, A., & Guitton, D. (2002). In multiple-step gaze shifts: Omnipause (OPNs) and collicular fixation neurons encode gaze position error; OPNs gate saccades. Jornal of Neurophysiology, 88, 1726–1742.CrossRef Bergeron, A., & Guitton, D. (2002). In multiple-step gaze shifts: Omnipause (OPNs) and collicular fixation neurons encode gaze position error; OPNs gate saccades. Jornal of Neurophysiology, 88, 1726–1742.CrossRef
Zurück zum Zitat Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33, 10–16.PubMedCrossRef Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33, 10–16.PubMedCrossRef
Zurück zum Zitat Bompas, A., Campbell, A. E., & Sumner, P. (2020). Cognitive control and automatic interference in mind and brain: A unified model of saccadic inhibition and countermanding. Psychological Review, 127, 524–561.PubMedPubMedCentralCrossRef Bompas, A., Campbell, A. E., & Sumner, P. (2020). Cognitive control and automatic interference in mind and brain: A unified model of saccadic inhibition and countermanding. Psychological Review, 127, 524–561.PubMedPubMedCentralCrossRef
Zurück zum Zitat Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114, 376–397.PubMedCrossRef Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114, 376–397.PubMedCrossRef
Zurück zum Zitat Bozis, A., & Moschovakis, A. K. (1998). Neural network simulations of the primate oculomotor system. III. An one-dimensional, one-directional model of the superior colliculus. Biological cybernetics, 79, 215–230.PubMedCrossRef Bozis, A., & Moschovakis, A. K. (1998). Neural network simulations of the primate oculomotor system. III. An one-dimensional, one-directional model of the superior colliculus. Biological cybernetics, 79, 215–230.PubMedCrossRef
Zurück zum Zitat Büttner-Ennever, J. A., Cohen, B., Pause, M., & Fries, W. (1988). Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. The Journal of Comparative Neurology, 267, 307–321.PubMedCrossRef Büttner-Ennever, J. A., Cohen, B., Pause, M., & Fries, W. (1988). Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. The Journal of Comparative Neurology, 267, 307–321.PubMedCrossRef
Zurück zum Zitat Buttner-Ennever, J. A., Horn, A. K., Henn, V., & Cohen, B. (1999). Projections from the superior colliculus motor map to omnipause neurons in monkey. The Journal of Comparative Neurology, 413, 55–67.PubMedCrossRef Buttner-Ennever, J. A., Horn, A. K., Henn, V., & Cohen, B. (1999). Projections from the superior colliculus motor map to omnipause neurons in monkey. The Journal of Comparative Neurology, 413, 55–67.PubMedCrossRef
Zurück zum Zitat Camalier, C. R., Gotler, A., Murthy, A., Thompson, K. G., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2007). Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vision Research, 47, 2187–2211.PubMedPubMedCentralCrossRef Camalier, C. R., Gotler, A., Murthy, A., Thompson, K. G., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2007). Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vision Research, 47, 2187–2211.PubMedPubMedCentralCrossRef
Zurück zum Zitat Cohen, B., & Henn, V. (1972). Unit activity in the pontine reticular formation associated with eye movements. Brain Research, 46, 403–410.PubMedCrossRef Cohen, B., & Henn, V. (1972). Unit activity in the pontine reticular formation associated with eye movements. Brain Research, 46, 403–410.PubMedCrossRef
Zurück zum Zitat Condorelli, D. F., Belluardo, N., Trovato-Salinaro, A., & Mudò, G. (2000). Expression of Cx36 in mammalian neurons. Brain Research Brain Research Reviews, 32, 72–85.CrossRef Condorelli, D. F., Belluardo, N., Trovato-Salinaro, A., & Mudò, G. (2000). Expression of Cx36 in mammalian neurons. Brain Research Brain Research Reviews, 32, 72–85.CrossRef
Zurück zum Zitat Costello, M. G., Zhu, D., Salinas, E., & Stanford, T. R. (2013). Perceptual modulation of motor–but not visual–responses in the frontal eye field during an urgent-decision task. Journal of Neuroscience, 33, 16394–16408.PubMedCrossRef Costello, M. G., Zhu, D., Salinas, E., & Stanford, T. R. (2013). Perceptual modulation of motor–but not visual–responses in the frontal eye field during an urgent-decision task. Journal of Neuroscience, 33, 16394–16408.PubMedCrossRef
Zurück zum Zitat Cromer, J.A., & Waitzman, D.M. (2006) Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation. The Journal of Physiology 570, 507-523 Cromer, J.A., & Waitzman, D.M. (2006) Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation. The Journal of Physiology 570, 507-523
Zurück zum Zitat Daye, P. M., Optican, L. M., Roze, E., et al. (2013). Neuromimetic model of saccades for localizing deficits in an atypical eye-movement pathology. Journal of Translational Medicine, 11, 125.PubMedPubMedCentralCrossRef Daye, P. M., Optican, L. M., Roze, E., et al. (2013). Neuromimetic model of saccades for localizing deficits in an atypical eye-movement pathology. Journal of Translational Medicine11, 125.PubMedPubMedCentralCrossRef
Zurück zum Zitat Daye, P. M., Optican, L. M., Blohm, G., & Lefèvre, P. (2014). Hierarchical control of two-dimensional gaze saccades. Journal of Computational Neuroscience, 36, 355–382.PubMedCrossRef Daye, P. M., Optican, L. M., Blohm, G., & Lefèvre, P. (2014). Hierarchical control of two-dimensional gaze saccades. Journal of Computational Neuroscience, 36, 355–382.PubMedCrossRef
Zurück zum Zitat Ding, L., & Gold, J. I. (2010). Caudate encodes multiple computations for perceptual decisions. Journal of Neuroscience, 30, 15747–15759.CrossRef Ding, L., & Gold, J. I. (2010). Caudate encodes multiple computations for perceptual decisions. Journal of Neuroscience, 30, 15747–15759.CrossRef
Zurück zum Zitat Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N., & Pouget, A. (2012). The cost of accumulating evidence in perceptual decision making. Journal of Neuroscience, 32, 3612–3628.PubMedCrossRef Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N., & Pouget, A. (2012). The cost of accumulating evidence in perceptual decision making. Journal of Neuroscience, 32, 3612–3628.PubMedCrossRef
Zurück zum Zitat Evans, N. J., Hawkins, G. E., Boehm, U., Wagenmakers, E. J., & Brown, S. D. (2017). The computations that support simple decision-making: a comparison between the diffusion and urgency-gating models. Scientific Reports, 7, 1-13. Evans, N. J., Hawkins, G. E., Boehm, U., Wagenmakers, E. J., & Brown, S. D. (2017). The computations that support simple decision-making: a comparison between the diffusion and urgency-gating models. Scientific Reports7, 1-13.
Zurück zum Zitat Everling, S., & Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. Journal of Neuroscience, 20, 387–400.PubMedCrossRef Everling, S., & Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. Journal of Neuroscience, 20, 387–400.PubMedCrossRef
Zurück zum Zitat Everling, S., Dorris, M. C., Klein, R. M., & Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. Journal of Neuroscience, 19, 2740–2754.PubMedCrossRef Everling, S., Dorris, M. C., Klein, R. M., & Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. Journal of Neuroscience, 19, 2740–2754.PubMedCrossRef
Zurück zum Zitat Everling, S., Paré, M., Dorris, M. C., & Munoz, D. P. (1998). Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. Journal of Neurophysiology, 79, 511–528.PubMedCrossRef Everling, S., Paré, M., Dorris, M. C., & Munoz, D. P. (1998). Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. Journal of Neurophysiology, 79, 511–528.PubMedCrossRef
Zurück zum Zitat Evinger, C., Kaneko, C. R., & Fuchs, A. F. (1982). Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. Journal of Neurophysiology, 47, 827–844.PubMedCrossRef Evinger, C., Kaneko, C. R., & Fuchs, A. F. (1982). Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. Journal of Neurophysiology, 47, 827–844.PubMedCrossRef
Zurück zum Zitat Fecteau, J. H., & Munoz, D. P. (2007). Warning signals influence motor processing. Journal of Neurophysiology, 97, 1600–1609.PubMedCrossRef Fecteau, J. H., & Munoz, D. P. (2007). Warning signals influence motor processing. Journal of Neurophysiology97, 1600–1609.PubMedCrossRef
Zurück zum Zitat Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annual Review of Psychology, 67, 641–666.PubMedCrossRef Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annual Review of Psychology, 67, 641–666.PubMedCrossRef
Zurück zum Zitat Gandhi, N. J., & Keller, E. L. (1997). Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. Journal of Neurophysiology, 78, 2221–2225.PubMedCrossRef Gandhi, N. J., & Keller, E. L. (1997). Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. Journal of Neurophysiology, 78, 2221–2225.PubMedCrossRef
Zurück zum Zitat Godlove, D. C., & Schall, J. D. (2016). Microsaccade production during saccade cancelation in a stop-signal task. Vision Research, 118, 5–16.PubMedCrossRef Godlove, D. C., & Schall, J. D. (2016). Microsaccade production during saccade cancelation in a stop-signal task. Vision Research, 118, 5–16.PubMedCrossRef
Zurück zum Zitat Godlove, D. C., Garr, A. K., Woodman, G. F., & Schall, J. D. (2011). Measurement of the extraocular spike potential during saccade countermanding. Journal of Neurophysiology, 106, 104–114.PubMedPubMedCentralCrossRef Godlove, D. C., Garr, A. K., Woodman, G. F., & Schall, J. D. (2011). Measurement of the extraocular spike potential during saccade countermanding. Journal of Neurophysiology, 106, 104–114.PubMedPubMedCentralCrossRef
Zurück zum Zitat Goffart, L., Hafed, Z. M., & Krauzlis, R. J. (2012) Visual fixation as equilibrium: Evidence from superior colliculus inactivation. Journal of Neuroscience 32, 10627-10636 Goffart, L., Hafed, Z. M., & Krauzlis, R. J.  (2012) Visual fixation as equilibrium: Evidence from superior colliculus inactivation. Journal of Neuroscience 32, 10627-10636
Zurück zum Zitat Hafed Z. M., Goffart L., & Krauzlis R. J. (2008). Superior colliculus inactivation causes stable offsets in eye position during tracking. Journal of Neuroscience, 28, 8124-8137. Hafed Z. M., Goffart L., & Krauzlis R. J. (2008). Superior colliculus inactivation causes stable offsets in eye position during tracking. Journal of Neuroscience, 28, 8124-8137.
Zurück zum Zitat Hafed, Z.M., Krauzlis, R.J., (2012) Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology 107, 1904-1916 Hafed, Z.M., Krauzlis, R.J., (2012) Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology 107, 1904-1916
Zurück zum Zitat Handel, A., & Glimcher, P. W. (1997). Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. Journal of Neurophysiology, 78, 2164–2175.PubMedCrossRef Handel, A., & Glimcher, P. W. (1997). Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. Journal of Neurophysiology, 78, 2164–2175.PubMedCrossRef
Zurück zum Zitat Hanes, D.P., Patterson, W.F. 2nd, & Schall, J.D. (1998). Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. Journal of Neurophysiology 79, 817-834. Hanes, D.P., Patterson, W.F. 2nd, & Schall, J.D. (1998). Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. Journal of Neurophysiology 79, 817-834.
Zurück zum Zitat Hanes, D.P., & Schall, J.D. (1996). Neural control of voluntary movement initiation. Science, 274, 427-430. Hanes, D.P., & Schall, J.D. (1996). Neural control of voluntary movement initiation. Science, 274, 427-430.
Zurück zum Zitat Hanks, T., et al. (2014). A neural mechanism of speed-accuracy tradeoff in macaque area LIP. eLife, 3, e02260. Hanks, T., et al. (2014). A neural mechanism of speed-accuracy tradeoff in macaque area LIP. eLife, 3, e02260.
Zurück zum Zitat Hauser, C. K., Zhu, D., Stanford, T. R., & Salinas, E. (2018). Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets. Elife, 7, e33456.PubMedPubMedCentralCrossRef Hauser, C. K., Zhu, D., Stanford, T. R., & Salinas, E. (2018). Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets. Elife, 7, e33456.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. Journal of Neurophysiology, 53, 266–291.PubMedCrossRef Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. Journal of Neurophysiology, 53, 266–291.PubMedCrossRef
Zurück zum Zitat Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. Journal of Neurophysiology, 53, 292–308.PubMedCrossRef Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. Journal of Neurophysiology, 53, 292–308.PubMedCrossRef
Zurück zum Zitat Horn, A. K., Büttner-Ennever, J. A., Wahle, P., & Reichenberger, I. (1994). Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. Journal of Neuroscience, 14, 2032–2046.PubMedCrossRef Horn, A. K., Büttner-Ennever, J. A., Wahle, P., & Reichenberger, I. (1994). Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. Journal of Neuroscience, 14, 2032–2046.PubMedCrossRef
Zurück zum Zitat Huerta, M. F., & Kaas, J. H. (1990). Supplementary eye field as defined by intracortical microstimulation: connections in macaques. Journal of Comparative Neurology, 293, 299–330.CrossRefPubMed Huerta, M. F., & Kaas, J. H. (1990). Supplementary eye field as defined by intracortical microstimulation: connections in macaques. Journal of Comparative Neurology, 293, 299–330.CrossRefPubMed
Zurück zum Zitat Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology, 253, 415–439.CrossRefPubMed Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology, 253, 415–439.CrossRefPubMed
Zurück zum Zitat Izawa, Y., Suzuki, H., & Shinoda, Y. (2009). Response properties of fixation neurons and their location in the frontal eye field in the monkey. Journal of Neurophysiology, 102, 2410–2422.PubMedCrossRef Izawa, Y., Suzuki, H., & Shinoda, Y. (2009). Response properties of fixation neurons and their location in the frontal eye field in the monkey. Journal of Neurophysiology, 102, 2410–2422.PubMedCrossRef
Zurück zum Zitat Izawa, Y., Suzuki, H., & Shinoda, Y. (2005). Initiation and suppression of saccades by the frontal eye field in the monkey. Annals of the New York Academy of Sciences, 1039, 220–231.PubMedCrossRef Izawa, Y., Suzuki, H., & Shinoda, Y. (2005). Initiation and suppression of saccades by the frontal eye field in the monkey. Annals of the New York Academy of Sciences, 1039, 220–231.PubMedCrossRef
Zurück zum Zitat Jantz, J. J., Watanabe, M., Everling, S., & Munoz, D. P. (2013). Threshold mechanism for saccade initiation in frontal eye field and superior colliculus. Journal of Neurophysiology, 109, 2767–2780.PubMedCrossRef Jantz, J. J., Watanabe, M., Everling, S., & Munoz, D. P. (2013). Threshold mechanism for saccade initiation in frontal eye field and superior colliculus. Journal of Neurophysiology, 109, 2767–2780.PubMedCrossRef
Zurück zum Zitat Kanda, T., Iwamoto, Y., Yoshida, K., & Shimazu, H. (2007). Glycinergic inputs cause the pause of pontine omnipause neurons during saccades. Neuroscience Letters, 413, 16–20.PubMedCrossRef Kanda, T., Iwamoto, Y., Yoshida, K., & Shimazu, H. (2007). Glycinergic inputs cause the pause of pontine omnipause neurons during saccades. Neuroscience Letters, 413, 16–20.PubMedCrossRef
Zurück zum Zitat Kaneko, C. R. (2006). Saccade-related, long-lead burst neurons in the monkey rostral pons. Journal of Neurophysiology, 95(2), 979–994.PubMedCrossRef Kaneko, C. R. (2006). Saccade-related, long-lead burst neurons in the monkey rostral pons. Journal of Neurophysiology, 95(2), 979–994.PubMedCrossRef
Zurück zum Zitat Kaneko, C. R. (1996). Effects of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. Journal of Neurophysiology, 75, 2229–2242.PubMedCrossRef Kaneko, C. R. (1996). Effects of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. Journal of Neurophysiology, 75, 2229–2242.PubMedCrossRef
Zurück zum Zitat Keller, E. L. (1974). Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology, 37, 316–332.PubMedCrossRef Keller, E. L. (1974). Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology, 37, 316–332.PubMedCrossRef
Zurück zum Zitat Keller, E. L., & Edelman, J. A. (1994). Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. Journal of Neurophysiology, 72, 2754–2770.PubMedCrossRef Keller, E. L., & Edelman, J. A. (1994). Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. Journal of Neurophysiology, 72, 2754–2770.PubMedCrossRef
Zurück zum Zitat Keller, E.L., Lee, B.T., Lee, K.M. (2008). Frontal eye field signals that may trigger the brainstem saccade generator. Progress in Brain Research, 171, 107-114. Keller, E.L., Lee, B.T., Lee, K.M. (2008). Frontal eye field signals that may trigger the brainstem saccade generator. Progress in Brain Research, 171, 107-114.
Zurück zum Zitat Kobayashi, Y., Saito, Y., & Isa, T. (2001). Facilitation of saccade initiation by brainstem cholinergic system. Brain Development, 23(Suppl 1), S24–S27.PubMedCrossRef Kobayashi, Y., Saito, Y., & Isa, T. (2001). Facilitation of saccade initiation by brainstem cholinergic system. Brain Development, 23(Suppl 1), S24–S27.PubMedCrossRef
Zurück zum Zitat Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews Neuroscience, 5, 13–23.PubMedCrossRef Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews Neuroscience, 5, 13–23.PubMedCrossRef
Zurück zum Zitat Krauzlis, R.J., Basso, M.A., Wurtz, R.H. (1997). Shared motor error for multiple eye movements. Science. 276, 1693-1695. Krauzlis, R.J., Basso, M.A., Wurtz, R.H. (1997). Shared motor error for multiple eye movements. Science. 276, 1693-1695.
Zurück zum Zitat Krauzlis, R. J., Goffart, L., & Hafed, Z. M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160205.CrossRef Krauzlis, R. J., Goffart, L., & Hafed, Z. M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160205.CrossRef
Zurück zum Zitat Lefevre, P., Quaia, C., & Optican, L. M. (1998). Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks, 11, 1175–1190.PubMedCrossRef Lefevre, P., Quaia, C., & Optican, L. M. (1998). Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks, 11, 1175–1190.PubMedCrossRef
Zurück zum Zitat Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRef Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRef
Zurück zum Zitat Lo, C. C., & Wang, X. J. (2006). Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience, 9, 956–963.PubMedCrossRef Lo, C. C., & Wang, X. J. (2006). Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience, 9, 956–963.PubMedCrossRef
Zurück zum Zitat Lo, C. C., Wang, C. T., & Wang, X. J. (2015). Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition. Journal of Neurophysiology, 114, 650–661.PubMedPubMedCentralCrossRef Lo, C. C., Wang, C. T., & Wang, X. J. (2015). Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition. Journal of Neurophysiology, 114, 650–661.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lo, C. C., Boucher, L., Paré, M., Schall, J. D., & Wang, X. J. (2009). Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model. Journal Neuroscience, 29, 9059–9071.PubMedCrossRef Lo, C. C., Boucher, L., Paré, M., Schall, J. D., & Wang, X. J. (2009). Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model. Journal Neuroscience, 29, 9059–9071.PubMedCrossRef
Zurück zum Zitat Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action - a theory of an act of control. Psychological Review, 91, 295–327.CrossRef Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action - a theory of an act of control. Psychological Review, 91, 295–327.CrossRef
Zurück zum Zitat Logan, G. D., Yamaguchi, M., Schall, J. D., & Palmeri, T. J. (2015). Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding. Psychological Review, 122, 115–147.PubMedPubMedCentralCrossRef Logan, G. D., Yamaguchi, M., Schall, J. D., & Palmeri, T. J. (2015). Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding. Psychological Review, 122, 115–147.PubMedPubMedCentralCrossRef
Zurück zum Zitat Luschei, E. S., & Fuchs, A. F. (1972). Activity of brain stem neurons during eye movements of alert monkeys. Journal of Neurophysiology, 35, 445–461.PubMedCrossRef Luschei, E. S., & Fuchs, A. F. (1972). Activity of brain stem neurons during eye movements of alert monkeys. Journal of Neurophysiology, 35, 445–461.PubMedCrossRef
Zurück zum Zitat Manohar, S. G., Chong, T. T., Apps, M. A., Batla, A., Stamelou, M., Jarman, P. R., et al. (2015). Reward pays the cost of noise reduction in motor and cognitive control. Current Biology, 29, 1707–1716.CrossRef Manohar, S. G., Chong, T. T., Apps, M. A., Batla, A., Stamelou, M., Jarman, P. R., et al. (2015). Reward pays the cost of noise reduction in motor and cognitive control. Current Biology, 29, 1707–1716.CrossRef
Zurück zum Zitat May, P. J. (2006). The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Research, 151, 321–378.PubMedCrossRef May, P. J. (2006). The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Research, 151, 321–378.PubMedCrossRef
Zurück zum Zitat Metzen, M. G., Krahe, R., & Chacron, M. J. (2016). Burst firing in the electrosensory system of gymnotiform weakly electric fish: mechanisms and functional roles. Frontiers in Computational Neuroscience, 10, 81.PubMedPubMedCentralCrossRef Metzen, M. G., Krahe, R., & Chacron, M. J. (2016). Burst firing in the electrosensory system of gymnotiform weakly electric fish: mechanisms and functional roles. Frontiers in Computational Neuroscience, 10, 81.PubMedPubMedCentralCrossRef
Zurück zum Zitat Middlebrooks, P. G., Zandbelt, B. B., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2020). Countermanding perceptual decision-making. iScience, 23(1), 100777.PubMedCrossRef Middlebrooks, P. G., Zandbelt, B. B., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2020). Countermanding perceptual decision-making. iScience, 23(1), 100777.PubMedCrossRef
Zurück zum Zitat Miura, K., & Optican, L. M. (2006). Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. Journal of Computational Neuroscience, 20, 25–41.PubMedCrossRef Miura, K., & Optican, L. M. (2006). Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. Journal of Computational Neuroscience, 20, 25–41.PubMedCrossRef
Zurück zum Zitat Moschovakis, A. K., Karabelas, A. B., & Highstein, S. M. (1988). Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. Journal of Neurophysiology, 60, 232–262.PubMedCrossRef Moschovakis, A. K., Karabelas, A. B., & Highstein, S. M. (1988). Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. Journal of Neurophysiology, 60, 232–262.PubMedCrossRef
Zurück zum Zitat Moschovakis, A. K., Karabelas, A. B., & Highstein, S. M. (1988). Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. Journal of Neurophysiology, 60, 263–302.PubMedCrossRef Moschovakis, A. K., Karabelas, A. B., & Highstein, S. M. (1988). Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. Journal of Neurophysiology, 60, 263–302.PubMedCrossRef
Zurück zum Zitat Munoz, D. P., & Istvan, P. J. (1998). Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. Journal of Neurophysiology, 79, 1193–1209.PubMedCrossRef Munoz, D. P., & Istvan, P. J. (1998). Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. Journal of Neurophysiology, 79, 1193–1209.PubMedCrossRef
Zurück zum Zitat Munoz, D. P., & Wurtz, R. H. (1993a). Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. Journal of Neurophysiology, 70, 559–575.PubMedCrossRef Munoz, D. P., & Wurtz, R. H. (1993a). Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. Journal of Neurophysiology, 70, 559–575.PubMedCrossRef
Zurück zum Zitat Munoz, D. P., & Wurtz, R. H. (1993b). Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. Journal of Neurophysiology, 70, 576–589.PubMedCrossRef Munoz, D. P., & Wurtz, R. H. (1993b). Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. Journal of Neurophysiology, 70, 576–589.PubMedCrossRef
Zurück zum Zitat Munoz, D. P., & Wurtz, R. H. (1995). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. Journal of Neurophysiology, 73, 2313–2333.PubMedCrossRef Munoz, D. P., & Wurtz, R. H. (1995). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. Journal of Neurophysiology, 73, 2313–2333.PubMedCrossRef
Zurück zum Zitat Murthy, A., Ray, S., Shorter, S. M., Schall, J. D., & Thompson, K. G. (2009). Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. Journal of Neurophysiology, 101, 2485–2506.PubMedPubMedCentralCrossRef Murthy, A., Ray, S., Shorter, S. M., Schall, J. D., & Thompson, K. G. (2009). Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. Journal of Neurophysiology, 101, 2485–2506.PubMedPubMedCentralCrossRef
Zurück zum Zitat Noda, H., Sugita, S., & Ikeda, Y. (1990). Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. Journal of Comparative Neurology, 302, 330–348.CrossRefPubMed Noda, H., Sugita, S., & Ikeda, Y. (1990). Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. Journal of Comparative Neurology, 302, 330–348.CrossRefPubMed
Zurück zum Zitat O’Connell, R. G., Shadlen, M. N., Wong-Lin, K., & Kelly, S. P. (2018). Bridging neural and computational viewpoints on perceptual decision-making. Trends in Neurosciences, 41, 838–852.PubMedPubMedCentralCrossRef O’Connell, R. G., Shadlen, M. N., Wong-Lin, K., & Kelly, S. P. (2018). Bridging neural and computational viewpoints on perceptual decision-making. Trends in Neurosciences, 41, 838–852.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ogasawara, T., Nejime, M., Takada, M., & Matsumoto, M. (2018). Primate nigrostriatal dopamine system regulates saccadic response inhibition. Neuron., 100, 1513–1526.PubMedCrossRef Ogasawara, T., Nejime, M., Takada, M., & Matsumoto, M. (2018). Primate nigrostriatal dopamine system regulates saccadic response inhibition. Neuron., 100, 1513–1526.PubMedCrossRef
Zurück zum Zitat Ohgaki, T., Curthoys, I. S., & Markham, C. H. (1987). Anatomy of physiologically identified eye-movement-related pause neurons in the cat: Pontomedullary region. Journal of Comparative Neurology, 266, 56–72.PubMedCrossRef Ohgaki, T., Curthoys, I. S., & Markham, C. H. (1987). Anatomy of physiologically identified eye-movement-related pause neurons in the cat: Pontomedullary region. Journal of Comparative Neurology, 266, 56–72.PubMedCrossRef
Zurück zum Zitat Ohtsuka, K. & Nagasaka. Y. (1999). Divergent axon collaterals from the rostral superior colliculus to the pretectal accommodation-related areas and the omnipause neuron area in the cat. The Journal of Comparative Neurology, 413, 68-76. Ohtsuka, K. & Nagasaka. Y. (1999). Divergent axon collaterals from the rostral superior colliculus to the pretectal accommodation-related areas and the omnipause neuron area in the cat. The Journal of Comparative Neurology, 413, 68-76.
Zurück zum Zitat Optican, L. M., & Pretegiani, E. (2017). What stops a saccade? Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160194.CrossRef Optican, L. M., & Pretegiani, E. (2017). What stops a saccade? Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160194.CrossRef
Zurück zum Zitat Optican, L. M., & Pretegiani, E. (2017). A GABAergic dysfunction in the olivary-cerebellar-brainstem network may cause eye oscillations and body tremor. II. Model simulations of saccadic eye oscillations. Frontiers in Neurology, 8, 372.PubMedPubMedCentralCrossRef Optican, L. M., & Pretegiani, E. (2017). A GABAergic dysfunction in the olivary-cerebellar-brainstem network may cause eye oscillations and body tremor. II. Model simulations of saccadic eye oscillations. Frontiers in Neurology, 8, 372.PubMedPubMedCentralCrossRef
Zurück zum Zitat Optican, L. M., & Quaia, C. (2002). Distributed model of collicular and cerebellar function during saccades. Annals of the New York Academy of Sciences, 956, 164–177.PubMedCrossRef Optican, L. M., & Quaia, C. (2002). Distributed model of collicular and cerebellar function during saccades. Annals of the New York Academy of Sciences, 956, 164–177.PubMedCrossRef
Zurück zum Zitat Optican, L. M., Rucker, J. C., Rizzo, J. R., & Hudson, T. E. (2019). Modeling gaze position-dependent opsoclonus. Progress in Brain Research, 249, 35–61.PubMedCrossRef Optican, L. M., Rucker, J. C., Rizzo, J. R., & Hudson, T. E. (2019). Modeling gaze position-dependent opsoclonus. Progress in Brain Research, 249, 35–61.PubMedCrossRef
Zurück zum Zitat Otero-Millan, J., Macknik, S.L., Serra, A., Leigh, R.J., Martinez-Conde, S. (2011). Triggering mechanisms in microsaccade and saccade generation: a novel proposal. Annals of the New York Academy of Sciences. 1233:107-116. Otero-Millan, J., Macknik, S.L., Serra, A., Leigh, R.J., Martinez-Conde, S. (2011). Triggering mechanisms in microsaccade and saccade generation: a novel proposal. Annals of the New York Academy of Sciences. 1233:107-116.
Zurück zum Zitat Otero-Millan, J., Optican, L. M., Macknik, S. L., & Martinez-Conde, S. (2018). Modeling the triggering of saccades, microsaccades, and saccadic intrusions. Frontiers in Neurology, 9, 346. Otero-Millan, J., Optican, L. M., Macknik, S. L., & Martinez-Conde, S. (2018). Modeling the triggering of saccades, microsaccades, and saccadic intrusions. Frontiers in Neurology9, 346.
Zurück zum Zitat Paré, M., & Dorris, M. C. (2011). The role of posterior parietal cortex in the regulation of saccadic eye movements. The Oxford Handbook of Eye Movements, 257-278. Paré, M., & Dorris, M. C. (2011). The role of posterior parietal cortex in the regulation of saccadic eye movements. The Oxford Handbook of Eye Movements, 257-278.
Zurück zum Zitat Paré, M., & Guitton, D. (1994). The fixation area of the cat superior colliculus: effects of electrical stimulation and direct connection with brainstem omnipause neurons. Experimental Brain Research, 101, 109–122.PubMed Paré, M., & Guitton, D. (1994). The fixation area of the cat superior colliculus: effects of electrical stimulation and direct connection with brainstem omnipause neurons. Experimental Brain Research, 101, 109–122.PubMed
Zurück zum Zitat Paré, M., & Guitton, D. (1998). Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat. Journal of Neurophysiology, 79, 3060–3076.PubMedCrossRef Paré, M., & Guitton, D. (1998). Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat. Journal of Neurophysiology, 79, 3060–3076.PubMedCrossRef
Zurück zum Zitat Paré, M., Hanes, D.P. (2003). Controlled movement processing: superior colliculus activity associated with countermanded saccades. Journal of Neuroscience. 23:6480-6489. Paré, M., Hanes, D.P. (2003). Controlled movement processing: superior colliculus activity associated with countermanded saccades. Journal of Neuroscience. 23:6480-6489.
Zurück zum Zitat Paré, M., & Munoz, D. P. (2001). Expression of a re-centering bias in saccade regulation by superior colliculus neurons. Experimental Brain Research, 137, 354–368.PubMedCrossRef Paré, M., & Munoz, D. P. (2001). Expression of a re-centering bias in saccade regulation by superior colliculus neurons. Experimental Brain Research, 137, 354–368.PubMedCrossRef
Zurück zum Zitat Paré, M., & Wurtz, R. H. (2001). Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. Journal of Neurophysiology, 85, 2545–2562.PubMedCrossRef Paré, M., & Wurtz, R. H. (2001). Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. Journal of Neurophysiology, 85, 2545–2562.PubMedCrossRef
Zurück zum Zitat Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. P. (2014). Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. European Journal of Neuroscience, 39, 2000–2013.CrossRefPubMed Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. P. (2014). Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. European Journal of Neuroscience, 39, 2000–2013.CrossRefPubMed
Zurück zum Zitat Pretegiani, E., Rosini, F., Federico, A., Optican, L. M., & Rufa, A. (2017). Eye movements in genetic parkinsonisms affecting the α-synuclein, PARK9, and manganese network. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 128, 2450–2453.CrossRef Pretegiani, E., Rosini, F., Federico, A., Optican, L. M., & Rufa, A. (2017). Eye movements in genetic parkinsonisms affecting the α-synuclein, PARK9, and manganese network. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 128, 2450–2453.CrossRef
Zurück zum Zitat Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. Journal of Neuroscience, 32, 3433-3446. Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. Journal of Neuroscience32, 3433-3446.
Zurück zum Zitat Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117, 1113–1143.PubMedPubMedCentralCrossRef Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117, 1113–1143.PubMedPubMedCentralCrossRef
Zurück zum Zitat Quaia, C., Lefevre, P., & Optican, L. M. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology, 82, 999–1018.PubMedCrossRef Quaia, C., Lefevre, P., & Optican, L. M. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology, 82, 999–1018.PubMedCrossRef
Zurück zum Zitat Ramakrishnan, A., Sureshbabu, R., & Murthy, A. (2012). Understanding how the brain changes its mind: microstimulation in the macaque frontal eye field reveals how saccade plans are changed. Journal Neuroscience, 32, 4457–4472.PubMedCrossRef Ramakrishnan, A., Sureshbabu, R., & Murthy, A. (2012). Understanding how the brain changes its mind: microstimulation in the macaque frontal eye field reveals how saccade plans are changed. Journal Neuroscience, 32, 4457–4472.PubMedCrossRef
Zurück zum Zitat Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L., & Segraves, M. A. (2007). Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. Journal of Neurophysiology, 97, 1756–1774.PubMedCrossRef Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L., & Segraves, M. A. (2007). Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. Journal of Neurophysiology, 97, 1756–1774.PubMedCrossRef
Zurück zum Zitat Raybourn, M.S., & Keller, E.L. (1977) Colliculoreticular organization in primate oculomotor system. Journal of Neurophysiology 40, 861-878 Raybourn, M.S., & Keller, E.L. (1977) Colliculoreticular organization in primate oculomotor system. Journal of Neurophysiology 40, 861-878
Zurück zum Zitat Reppert, T. R., Servant, M., Heitz, R. P., & Schall, J. D. (2018). Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field. Journal of Neurophysiology, 120, 372-384. Reppert, T. R., Servant, M., Heitz, R. P., & Schall, J. D. (2018). Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field. Journal of Neurophysiology120, 372-384.
Zurück zum Zitat Robinson, D. A. (1973). Models of the saccadic eye movement control system. Kybernetik, 14, 71–83.PubMedCrossRef Robinson, D. A. (1973). Models of the saccadic eye movement control system. Kybernetik, 14, 71–83.PubMedCrossRef
Zurück zum Zitat Robinson, D. A. (1975). Oculomotor control signals. In G. Lennerstrand & P. Bach-y-Rita (Eds.), Basic Mechanisms of Ocular Motility and Their Clinical Implications (pp. 337–374). Oxford: Pergamon Press. Robinson, D. A. (1975). Oculomotor control signals. In G. Lennerstrand & P. Bach-y-Rita (Eds.), Basic Mechanisms of Ocular Motility and Their Clinical Implications (pp. 337–374). Oxford: Pergamon Press.
Zurück zum Zitat Rodgers, C.K., Munoz, D.P., Scott, S.H., Paré, M., (2006) Discharge properties of monkey tectoreticular neurons. Journal of Neurophysiology 95, 3502-3511 Rodgers, C.K., Munoz, D.P., Scott, S.H., Paré, M., (2006) Discharge properties of monkey tectoreticular neurons. Journal of Neurophysiology 95, 3502-3511
Zurück zum Zitat Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal Neuroscience, 22, 9475–9489.PubMedCrossRef Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal Neuroscience, 22, 9475–9489.PubMedCrossRef
Zurück zum Zitat Saito, Y., & Isa, T. (2003). Local excitatory network and NMDA receptor activation generate a synchronous and bursting command from the superior colliculus. Journal Neuroscience, 23, 5854–5864.PubMedCrossRef Saito, Y., & Isa, T. (2003). Local excitatory network and NMDA receptor activation generate a synchronous and bursting command from the superior colliculus. Journal Neuroscience, 23, 5854–5864.PubMedCrossRef
Zurück zum Zitat Salinas, E., & Stanford, T. R. (2018). Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Sci Reports, 8, 14163. Salinas, E., & Stanford, T. R. (2018). Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Sci Reports, 8, 14163.
Zurück zum Zitat Schall, J. D., Palmeri, T. J., & Logan, G. D. (2017). Models of inhibitory control. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1718), 20160193. Schall, J. D., Palmeri, T. J., & Logan, G. D. (2017). Models of inhibitory control. Philosophical Transactions of the Royal Society B: Biological Sciences372(1718), 20160193.
Zurück zum Zitat Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F., & Berke, J. D. (2013). Canceling actions involves a race between basal ganglia pathways. Nature Neuroscience, 16, 1118–1124.PubMedPubMedCentralCrossRef Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F., & Berke, J. D. (2013). Canceling actions involves a race between basal ganglia pathways. Nature Neuroscience, 16, 1118–1124.PubMedPubMedCentralCrossRef
Zurück zum Zitat Schultz, K. P., Williams, C. R., & Busettini, C. (2010). Macaque pontine omnipause neurons play no direct role in the generation of eye blinks. Journal Neurophysiology, 103, 2255–2274.PubMedCrossRef Schultz, K. P., Williams, C. R., & Busettini, C. (2010). Macaque pontine omnipause neurons play no direct role in the generation of eye blinks. Journal Neurophysiology, 103, 2255–2274.PubMedCrossRef
Zurück zum Zitat Scudder, C. A., Kaneko, C. S., & Fuchs, A. F. (2002). The brainstem burst generator for saccadic eye movements: a modern synthesis. Experimental Brain Research, 142, 439–462.PubMedCrossRef Scudder, C. A., Kaneko, C. S., & Fuchs, A. F. (2002). The brainstem burst generator for saccadic eye movements: a modern synthesis. Experimental Brain Research, 142, 439–462.PubMedCrossRef
Zurück zum Zitat Scudder, C.A., Moschovakis, A.K., Karabelas, A.B., Highstein, S.M., (1996) Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. I. Descending projections from the mesencephalon. Journal of Neurophysiology 76, 332-352 Scudder, C.A., Moschovakis, A.K., Karabelas, A.B., Highstein, S.M., (1996) Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. I. Descending projections from the mesencephalon. Journal of Neurophysiology 76, 332-352
Zurück zum Zitat Segraves, M. A. (1992). Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. Journal of Neurophysiology, 68, 1967-1985. Segraves, M. A. (1992). Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. Journal of Neurophysiology68, 1967-1985.
Zurück zum Zitat Shadmehr, R., Reppert, T. R., Summerside, E. M., Yoon, T., & Ahmed, A. A. (2019). Movement vigor as a reflection of subjective economic utility. Trends in Neurosciences, 42, 323–336.PubMedPubMedCentralCrossRef Shadmehr, R., Reppert, T. R., Summerside, E. M., Yoon, T., & Ahmed, A. A. (2019). Movement vigor as a reflection of subjective economic utility. Trends in Neurosciences, 42, 323–336.PubMedPubMedCentralCrossRef
Zurück zum Zitat Shaikh, A. G., Ramat, S., Optican, L. M., Miura, K., Leigh, R. J., & Zee, D. S. (2008). Saccadic burst cell membrane dysfunction is responsible for saccadic oscillations. Journal of Neuro-ophthalmology: the official journal of the North American Neuro-Ophthalmology Society, 28, 329–336.CrossRef Shaikh, A. G., Ramat, S., Optican, L. M., Miura, K., Leigh, R. J., & Zee, D. S. (2008). Saccadic burst cell membrane dysfunction is responsible for saccadic oscillations. Journal of Neuro-ophthalmology: the official journal of the North American Neuro-Ophthalmology Society, 28, 329–336.CrossRef
Zurück zum Zitat Shaikh, A. G., Zee, D. S., Optican, L. M., Miura, K., Ramat, S., & Leigh, R. J. (2011). The effects of ion channel blockers validate the conductance-based model of saccadic oscillations. Annals of the New York Academy of Sciences, 1233, 58–63.PubMedPubMedCentralCrossRef Shaikh, A. G., Zee, D. S., Optican, L. M., Miura, K., Ramat, S., & Leigh, R. J. (2011). The effects of ion channel blockers validate the conductance-based model of saccadic oscillations. Annals of the New York Academy of Sciences, 1233, 58–63.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.PubMedCrossRef Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.PubMedCrossRef
Zurück zum Zitat Shinoda, Y., Sugiuchi, Y., Takahashi, M., Izawa, Y. (2011). Neural substrate for suppression of omnipause neurons at the onset of saccades. Annals of the New York Academy of Sciences. 1233:100-106. Shinoda, Y., Sugiuchi, Y., Takahashi, M., Izawa, Y. (2011). Neural substrate for suppression of omnipause neurons at the onset of saccades. Annals of the New York Academy of Sciences. 1233:100-106.
Zurück zum Zitat Shinoda, Y., Takahashi, M., & Sugiuchi, Y. (2019). Brainstem neural circuits for fixation and generation of saccadic eye movements. Progress Brain Research, 249, 95–104.CrossRef Shinoda, Y., Takahashi, M., & Sugiuchi, Y. (2019). Brainstem neural circuits for fixation and generation of saccadic eye movements. Progress Brain Research, 249, 95–104.CrossRef
Zurück zum Zitat Shook, B. L., Schlag‐Rey, M., & Schlag, J. (1990). Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. Journal of Comparative Neurology, 301, 618-642. Shook, B. L., Schlag‐Rey, M., & Schlag, J. (1990). Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. Journal of Comparative Neurology301, 618-642.
Zurück zum Zitat Sooksawate, T., Saito, Y., & Isa, T. (2005). Electrophysiological and morphological properties of identified crossed tecto-reticular neurons in the rat superior colliculus. Neuroscience Research, 52, 174–184.PubMedCrossRef Sooksawate, T., Saito, Y., & Isa, T. (2005). Electrophysiological and morphological properties of identified crossed tecto-reticular neurons in the rat superior colliculus. Neuroscience Research, 52, 174–184.PubMedCrossRef
Zurück zum Zitat Sparks, D. L. (1978). Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain research, 156, 1-16. Sparks, D. L. (1978). Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain research156, 1-16.
Zurück zum Zitat Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3, 952–964.PubMedCrossRef Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3, 952–964.PubMedCrossRef
Zurück zum Zitat Spencer, R. F., Wenthold, R. J., & Baker, R. (1989). Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus. Journal of Neuroscience, 9, 2718–2736.PubMedCrossRef Spencer, R. F., Wenthold, R. J., & Baker, R. (1989). Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus. Journal of Neuroscience, 9, 2718–2736.PubMedCrossRef
Zurück zum Zitat Standage, D., You, H., Wang, D. H., & Dorris, M. C. (2013). Trading speed and accuracy by coding time: a coupled-circuit cortical model. Plos Computational Biology 9(4), e1003021. Standage, D., You, H., Wang, D. H., & Dorris, M. C. (2013). Trading speed and accuracy by coding time: a coupled-circuit cortical model. Plos Computational Biology 9(4), e1003021.
Zurück zum Zitat Stanton, G. B., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. Journal of Comparative Neurology, 271, 493–506.CrossRefPubMed Stanton, G. B., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. Journal of Comparative Neurology, 271, 493–506.CrossRefPubMed
Zurück zum Zitat Strassman, A., Evinger, C., McCrea, R. A., Baker, R. G., & Highstein, S. M. (1987). Anatomy and physiology of intracellularly labelled omnipause neurons in the cat and squirrel monkey. Experimental Brain Research, 67, 436–440.PubMedCrossRef Strassman, A., Evinger, C., McCrea, R. A., Baker, R. G., & Highstein, S. M. (1987). Anatomy and physiology of intracellularly labelled omnipause neurons in the cat and squirrel monkey. Experimental Brain Research, 67, 436–440.PubMedCrossRef
Zurück zum Zitat Stuphorn, V., & Schall, J. D. (2006). Executive control of countermanding saccades by the supplementary eye field. Nature Neuroscience, 9, 925–931.PubMedCrossRef Stuphorn, V., & Schall, J. D. (2006). Executive control of countermanding saccades by the supplementary eye field. Nature Neuroscience, 9, 925–931.PubMedCrossRef
Zurück zum Zitat Stuphorn, V., Taylor, T.L., Schall, J.D., (2000) Performance monitoring by the supplementary eye field. Nature 408, 857-860 Stuphorn, V., Taylor, T.L., Schall, J.D., (2000) Performance monitoring by the supplementary eye field. Nature 408, 857-860
Zurück zum Zitat Stuphorn, V., Brown, J. W., & Schall, J. D. (2010). Role of supplementary eye field in saccade initiation: executive, not direct, control. Journal Neurophysiology, 103, 801–816.PubMedCrossRef Stuphorn, V., Brown, J. W., & Schall, J. D. (2010). Role of supplementary eye field in saccade initiation: executive, not direct, control. Journal Neurophysiology, 103, 801–816.PubMedCrossRef
Zurück zum Zitat Tanaka, M. (2007). Cognitive signals in the primate motor thalamus predict saccade timing. Journal of Neuroscience, 27, 12109–12118.PubMedCrossRef Tanaka, M. (2007). Cognitive signals in the primate motor thalamus predict saccade timing. Journal of Neuroscience, 27, 12109–12118.PubMedCrossRef
Zurück zum Zitat Thakkar, K. N., Schall, J. D., Boucher, L., Logan, G. D., & Park, S. (2011). Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biological Psychiatry, 69, 55–62.PubMedCrossRef Thakkar, K. N., Schall, J. D., Boucher, L., Logan, G. D., & Park, S. (2011). Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biological Psychiatry, 69, 55–62.PubMedCrossRef
Zurück zum Zitat Thura, D., & Cisek, P. (2016). Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. Journal of Neuroscience, 36, 938–956.PubMedCrossRef Thura, D., & Cisek, P. (2016). Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. Journal of Neuroscience, 36, 938–956.PubMedCrossRef
Zurück zum Zitat Thura, D., Beauregard-Racine, J., Fradet, C. W., & Cisek, P. (2012). Decision making by urgency gating: theory and experimental support. Journal of Neurophysiology, 108, 2912-2930. Thura, D., Beauregard-Racine, J., Fradet, C. W., & Cisek, P. (2012). Decision making by urgency gating: theory and experimental support. Journal of Neurophysiology108, 2912-2930.
Zurück zum Zitat Wang, N., Perkins, E., Zhou, L., Warren, S., & May, P. J. (2013). Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity. Journal of Neuroscience, 9, 16285–16296.CrossRef Wang, N., Perkins, E., Zhou, L., Warren, S., & May, P. J. (2013). Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity. Journal of Neuroscience, 9, 16285–16296.CrossRef
Zurück zum Zitat Van Horn, M. R., & Cullen, K. E. (2012). Coding of microsaccades in three-dimensional space by premotor saccadic neurons. Journal of Neuroscience, 32, 1974–1980.PubMedCrossRef Van Horn, M. R., & Cullen, K. E. (2012). Coding of microsaccades in three-dimensional space by premotor saccadic neurons. Journal of Neuroscience, 32, 1974–1980.PubMedCrossRef
Zurück zum Zitat Van Horn, M. R., Mitchell, D. E., Massot, C., & Cullen, K. E. (2010). Local neural processing and the generation of dynamic motor commands within the saccadic premotor network. Journal of Neuroscience, 30, 10905-10917. Van Horn, M. R., Mitchell, D. E., Massot, C., & Cullen, K. E. (2010). Local neural processing and the generation of dynamic motor commands within the saccadic premotor network. Journal of Neuroscience30, 10905-10917.
Zurück zum Zitat Woodman, G. F., Kang, M. S., Thompson, K., & Schall, J. D. (2008). The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow. Psychological science, 19, 128-136. Woodman, G. F., Kang, M. S., Thompson, K., & Schall, J. D. (2008). The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow. Psychological science19, 128-136.
Zurück zum Zitat Yoshida, K., Iwamoto, Y., Chimoto, S., & Shimazu, H. (1999). Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. Journal of Neurophysiology, 82, 1198–1208.PubMedCrossRef Yoshida, K., Iwamoto, Y., Chimoto, S., & Shimazu, H. (1999). Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. Journal of Neurophysiology, 82, 1198–1208.PubMedCrossRef
Zurück zum Zitat Zandbelt, B., Purcell, B. A., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2014). Response times from ensembles of accumulators. Proceedings of the National Academy of Sciences USA, 111, 2848–2853.CrossRef Zandbelt, B., Purcell, B. A., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2014). Response times from ensembles of accumulators. Proceedings of the National Academy of Sciences USA, 111, 2848–2853.CrossRef
Metadaten
Titel
The unknown but knowable relationship between Presaccadic Accumulation of activity and Saccade initiation
verfasst von
Jeffrey D. Schall
Martin Paré
Publikationsdatum
12.03.2021
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2021
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-021-00784-7

Weitere Artikel der Ausgabe 3/2021

Journal of Computational Neuroscience 3/2021 Zur Ausgabe