Skip to main content
Erschienen in: Microsystem Technologies 2/2017

14.04.2015 | Technical Paper

The vacancy defect in graphene nano-ribbon field-effect transistor in the presence of an external perpendicular magnetic field

verfasst von: Somaye Bahrami, Ali Shahhoseini

Erschienen in: Microsystem Technologies | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate effect of vacancy defect on graphene nano-ribbon field effect transistor (GNR-FET) in the presence of an external perpendicular magnetic field. Our simulation is based on Non-Equilibrium Green’s Function (NEGF). The nearest neighbor tight-binding model based on pz orbital construct the device Hamiltonian. Also we calculate magnetoresistance (MR) for different position vacancies in presence B-field. We find an external B-field causes the conductance of the GNR increases, giving rise to the MR effect. The simulation results indicate in the presence of a small B-field the current is degraded because the vacancy defect act as scattering and the conductance decreases due to defects compared with the perfect nanoribbons and the MR is reduced but in the hall quantum regime the probability of being scattered by the vacancy reduced due to the electrons are more localized at edge states and this phenomena to enhance the MR ratio of the device. The results indicate that the defect near drain and near edge has the largest MR ratio in the presence of a small B-Field and in the hall quantum the defect near source has the largest MR ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bai J, Chen R, Xiu F, Liao L, Wang M, Shailos A, Wang KL, Huang Y, Duan X (2010) Very large magnetoresistance in graphene nanaoribbons. Nature Nanotechnol 5:655CrossRef Bai J, Chen R, Xiu F, Liao L, Wang M, Shailos A, Wang KL, Huang Y, Duan X (2010) Very large magnetoresistance in graphene nanaoribbons. Nature Nanotechnol 5:655CrossRef
Zurück zum Zitat Ball S, Gou J (2012) Modelling very large magnetoresistance of graphene nanoribbon devices. Nanoscale 4:982–985CrossRef Ball S, Gou J (2012) Modelling very large magnetoresistance of graphene nanoribbon devices. Nanoscale 4:982–985CrossRef
Zurück zum Zitat Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim Ak (2009) The electronic properties of graphene. Rev Modern Phys 81:155CrossRef Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim Ak (2009) The electronic properties of graphene. Rev Modern Phys 81:155CrossRef
Zurück zum Zitat Datta S (2005) Quantum transport: atom to transistor, Purdue University, Published in the USA by Cambridge University Press, New York Datta S (2005) Quantum transport: atom to transistor, Purdue University, Published in the USA by Cambridge University Press, New York
Zurück zum Zitat Dertzis I, Fiori G, Iannaccone G, Piccitto G, La Magna A (2012) Quantum transport modeling of defected graphene nanoribbons. Physica E 44:981CrossRef Dertzis I, Fiori G, Iannaccone G, Piccitto G, La Magna A (2012) Quantum transport modeling of defected graphene nanoribbons. Physica E 44:981CrossRef
Zurück zum Zitat Enciu D, Nemnes GA, Ursu I (2014) Spintronic device based on graphene nanoribbons with transition metal impurities. Towards space applications. INCAS BULLETIN 6:45CrossRef Enciu D, Nemnes GA, Ursu I (2014) Spintronic device based on graphene nanoribbons with transition metal impurities. Towards space applications. INCAS BULLETIN 6:45CrossRef
Zurück zum Zitat Fiori G, Yoa Y, Hong S, Iannaccone G, Guo J (2007) Performance comparsion graphene nanoribbon schottky barrier and MOSFET. In: Electron device meeting IEEE international conference, p 757 Fiori G, Yoa Y, Hong S, Iannaccone G, Guo J (2007) Performance comparsion graphene nanoribbon schottky barrier and MOSFET. In: Electron device meeting IEEE international conference, p 757
Zurück zum Zitat Golizadeh-Mojarad R, Datta S (2010) Non-equilibrium Green’s function based models for dephasing in quantum transport. In: Narlikar AV, Fu YY (eds) The Oxford handbook on nanoscience and nanotechnology, frontiers and advances, Chap 3, vol 1 (to appear) Golizadeh-Mojarad R, Datta S (2010) Non-equilibrium Green’s function based models for dephasing in quantum transport. In: Narlikar AV, Fu YY (eds) The Oxford handbook on nanoscience and nanotechnology, frontiers and advances, Chap 3, vol 1 (to appear)
Zurück zum Zitat Golizadeh-Mojarad R, Zainuddin ANM, Klimeck G, Datta S (2008) Atomistic nonequilibrium Green’s function simulations of graphene nano-ribbons in the quantum hall regime. J Comput Electron 7:407CrossRef Golizadeh-Mojarad R, Zainuddin ANM, Klimeck G, Datta S (2008) Atomistic nonequilibrium Green’s function simulations of graphene nano-ribbons in the quantum hall regime. J Comput Electron 7:407CrossRef
Zurück zum Zitat Gorjizadeh N, Farajian N, Kawazoe AA (2009) Effects of defects on conductance of graphene nanoribbons. Nano Technol 20:015201 Gorjizadeh N, Farajian N, Kawazoe AA (2009) Effects of defects on conductance of graphene nanoribbons. Nano Technol 20:015201
Zurück zum Zitat Khaliji K, Noei M, Tabatabaei SM, Pourfath M, Fathipour M, Abdi Y (2013) Tunable bandgap in bilayer armchair graphene nanoribbons: concurrent influence of electric field and uniaxial strain. IEEE Trans Electron Dev 60:8CrossRef Khaliji K, Noei M, Tabatabaei SM, Pourfath M, Fathipour M, Abdi Y (2013) Tunable bandgap in bilayer armchair graphene nanoribbons: concurrent influence of electric field and uniaxial strain. IEEE Trans Electron Dev 60:8CrossRef
Zurück zum Zitat Kumar SB, Jalil MBA, Tan SG, Liang G-C (2010) High magnetoresistance at room temperature in p-i-n graphene nanoribbons due to band-to-band tunneling effects. J Appl Phys 108:033709CrossRef Kumar SB, Jalil MBA, Tan SG, Liang G-C (2010) High magnetoresistance at room temperature in p-i-n graphene nanoribbons due to band-to-band tunneling effects. J Appl Phys 108:033709CrossRef
Zurück zum Zitat Maxwell JC (1892) A treatise on electricity and magnetism, vol 2, 3rd edn. Clarendon, Oxford, pp 68–73 Maxwell JC (1892) A treatise on electricity and magnetism, vol 2, 3rd edn. Clarendon, Oxford, pp 68–73
Zurück zum Zitat Peres NMR, Klironomos FD, Tasai S-W, Santas JR, Lopes dos santo JM, Castro Netro AH (2007) Electron waves in chemically substitued graphene. Europhys Lett 80:67007CrossRef Peres NMR, Klironomos FD, Tasai S-W, Santas JR, Lopes dos santo JM, Castro Netro AH (2007) Electron waves in chemically substitued graphene. Europhys Lett 80:67007CrossRef
Zurück zum Zitat Sancho MPL, Sancho JML, Rubio J (1984) Quick iterative scheme for the calculation of transfer matrices. J Phys F Method Phys 14:125CrossRef Sancho MPL, Sancho JML, Rubio J (1984) Quick iterative scheme for the calculation of transfer matrices. J Phys F Method Phys 14:125CrossRef
Zurück zum Zitat Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501CrossRef Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501CrossRef
Metadaten
Titel
The vacancy defect in graphene nano-ribbon field-effect transistor in the presence of an external perpendicular magnetic field
verfasst von
Somaye Bahrami
Ali Shahhoseini
Publikationsdatum
14.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2525-4

Weitere Artikel der Ausgabe 2/2017

Microsystem Technologies 2/2017 Zur Ausgabe

Neuer Inhalt