Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Calcolo 4/2020

01.12.2020

The virtual element method for a minimal surface problem

verfasst von: Paola Francesca Antonietti, Silvia Bertoluzza, Daniele Prada, Marco Verani

Erschienen in: Calcolo | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
Literatur
2.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013) MathSciNetCrossRef Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013) MathSciNetCrossRef
3.
Zurück zum Zitat Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \({\cal{C}} ^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016) MathSciNetCrossRef Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \({\cal{C}} ^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016) MathSciNetCrossRef
9.
Zurück zum Zitat Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. Tech. rep. arXiv:​1707.​01592 (2017) Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. Tech. rep. arXiv:​1707.​01592 (2017)
14.
Zurück zum Zitat Liu, X., Chen, Z.: A virtual element method for the Cahn-Hilliard problem in mixed form. Appl. Math. Lett. 87, 115–124 (2019) MathSciNetCrossRef Liu, X., Chen, Z.: A virtual element method for the Cahn-Hilliard problem in mixed form. Appl. Math. Lett. 87, 115–124 (2019) MathSciNetCrossRef
15.
Zurück zum Zitat Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978) CrossRef Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978) CrossRef
18.
Zurück zum Zitat Talischi, C., Paulino, G., Pereira, A., Menezes, I.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012) MathSciNetCrossRef Talischi, C., Paulino, G., Pereira, A., Menezes, I.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012) MathSciNetCrossRef
Metadaten
Titel
The virtual element method for a minimal surface problem
verfasst von
Paola Francesca Antonietti
Silvia Bertoluzza
Daniele Prada
Marco Verani
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 4/2020
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00388-0

Weitere Artikel der Ausgabe 4/2020

Calcolo 4/2020 Zur Ausgabe

Premium Partner