Skip to main content

2016 | OriginalPaper | Buchkapitel

4. The Weyl Functions

verfasst von : Russell Johnson, Rafael Obaya, Sylvia Novo, Carmen Núñez, Roberta Fabbri

Erschienen in: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main goal of this chapter is the analysis of the limiting qualitative behavior as the (real or complex) parameter \(\lambda\) tends to 0 of the flows determined by families of linear Hamiltonian systems with coefficient matrix of the form \(H +\lambda J^{-1}\varGamma\). Under a fundamental hypothesis, which is in particular satisfied if Γ is an Atkinson perturbation, the existence of the derivative at \(\lambda = 0\) of the rotation number \(\alpha _{\varGamma }(\lambda )\) is proved, and its value is worked out. If, in addition, Γ is positive definite (or if this is the case for the corresponding perturbation matrix in the Schrödinger case), then the existence of the limits in the L 1 topology of the Weyl functions \(M^{\pm }(\lambda )\) for \(\lambda = i\varepsilon\) as \(\varepsilon \rightarrow 0^{+}\) is proved; and, as in the case of α′(0), it is shown that the values of the limits can be determined from Γ alone. All these fact taken together amount to an extension of the well-known Kotani theory. As a consequence it is possible to generalize to the n-dimensional Schrödinger equation a famous inequality (obtained in the scalar case by Moser (1980) and by Deift and Simon (1983)) involving the rotation number and its derivative. The chapter ends with a description of a scenario in which the convergence of the Weyl functions is uniform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat L. Arnold, N.D. Cong, V.I. Oseledets, Jordan normal form for linear cocycles, Random Oper. Stoch. Equ. 7 (4) (1999), 303–358. L. Arnold, N.D. Cong, V.I. Oseledets, Jordan normal form for linear cocycles, Random Oper. Stoch. Equ. 7 (4) (1999), 303–358.
24.
Zurück zum Zitat R.H. Cameron, Almost periodic properties of bounded solutions of linear differential equations with almost periodic coefficients, J. Math. Phys. 15 (1936), 73–81. R.H. Cameron, Almost periodic properties of bounded solutions of linear differential equations with almost periodic coefficients, J. Math. Phys. 15 (1936), 73–81.
27.
Zurück zum Zitat G. Choquet, Lectures on Analysis, Benjamin N.Y. 1969. G. Choquet, Lectures on Analysis, Benjamin N.Y. 1969.
37.
Zurück zum Zitat P. Deift, B. Simon, Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension, Comm. Math. Phys. 90 (1983), 389–411. P. Deift, B. Simon, Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension, Comm. Math. Phys. 90 (1983), 389–411.
40.
Zurück zum Zitat L.H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys. 146 (1992), 447–482. L.H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys. 146 (1992), 447–482.
42.
Zurück zum Zitat R. Ellis, R. Johnson, Topological dynamics and linear differential systems, J. Differential Equations 44 (1982), 21–39. R. Ellis, R. Johnson, Topological dynamics and linear differential systems, J. Differential Equations 44 (1982), 21–39.
49.
Zurück zum Zitat R. Fabbri, C. Núñez, A.M. Sanz, A perturbation theorem for linear Hamiltonian systems with bounded orbits, Discrete Cont. Dynam. Systems, Ser. A 13 (3) (2005), 623–635 R. Fabbri, C. Núñez, A.M. Sanz, A perturbation theorem for linear Hamiltonian systems with bounded orbits, Discrete Cont. Dynam. Systems, Ser. A 13 (3) (2005), 623–635
52.
Zurück zum Zitat H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 85 (1961), 573–601. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 85 (1961), 573–601.
58.
Zurück zum Zitat E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975. E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975.
81.
Zurück zum Zitat R. Johnson, S. Novo, R. Obaya, Ergodic properties and Weyl M-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A (2000), 803–822. R. Johnson, S. Novo, R. Obaya, Ergodic properties and Weyl M-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A (2000), 803–822.
86.
Zurück zum Zitat R. Johnson, K. Palmer, G.R. Sell, Ergodic theory of linear dynamical systems, SIAM J. Math. Anal. 18 (1987), 1–33. R. Johnson, K. Palmer, G.R. Sell, Ergodic theory of linear dynamical systems, SIAM J. Math. Anal. 18 (1987), 1–33.
90.
Zurück zum Zitat P. Koosis, Introduction to H p spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, 1980. P. Koosis, Introduction to H p spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, 1980.
91.
Zurück zum Zitat S. Kotani, B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119 (1988), 403–429. S. Kotani, B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119 (1988), 403–429.
95.
Zurück zum Zitat P.D. Lax, Linear Algebra and Its Applications, Wiley Interscience, New Jersey, 2007. P.D. Lax, Linear Algebra and Its Applications, Wiley Interscience, New Jersey, 2007.
108.
Zurück zum Zitat J. Moser, An example of a Schrödinger equation with almost-periodic potential and no-where dense spectrum, Comment. Math. Helv. 56 (1981), 198–224. J. Moser, An example of a Schrödinger equation with almost-periodic potential and no-where dense spectrum, Comment. Math. Helv. 56 (1981), 198–224.
109.
Zurück zum Zitat J. Moser, J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Helv. Math. 59 (1984), 39–85. J. Moser, J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Helv. Math. 59 (1984), 39–85.
111.
Zurück zum Zitat S. Novo, C. Núñez, Linear Hamiltonian systems with absolutely continuous dynamics, Nonlinear Anal. T.M.A. 47 (2) (2001), 1401–1406. S. Novo, C. Núñez, Linear Hamiltonian systems with absolutely continuous dynamics, Nonlinear Anal. T.M.A. 47 (2) (2001), 1401–1406.
112.
Zurück zum Zitat S. Novo, C. Núñez, R. Obaya, Ergodic properties and rotation number for linear Hamiltonian systems, J. Differential Equations 148 (1998), 148–185. S. Novo, C. Núñez, R. Obaya, Ergodic properties and rotation number for linear Hamiltonian systems, J. Differential Equations 148 (1998), 148–185.
114.
Zurück zum Zitat S. Novo, R. Obaya, An ergodic classification of bidimensional linear systems, J. Dynam. Differential Equations 8 (3) (1996), 373–406. S. Novo, R. Obaya, An ergodic classification of bidimensional linear systems, J. Dynam. Differential Equations 8 (3) (1996), 373–406.
115.
Zurück zum Zitat S. Novo, R. Obaya, Bidimensional linear systems with singular dynamics, Proc. Amer. Math. Soc. 124 (10) (1996), 3163–3172. S. Novo, R. Obaya, Bidimensional linear systems with singular dynamics, Proc. Amer. Math. Soc. 124 (10) (1996), 3163–3172.
116.
Zurück zum Zitat C. Núñez, R. Obaya, Non-tangential limit of the Weyl m-functions for the ergodic Schrödinger equation, J. Dynam. Differential Equations 10 (2) (1998), 209–257. C. Núñez, R. Obaya, Non-tangential limit of the Weyl m-functions for the ergodic Schrödinger equation, J. Dynam. Differential Equations 10 (2) (1998), 209–257.
117.
Zurück zum Zitat R. Obaya, M. Paramio, Directional differentiability of the rotation number for the almost periodic Schrödinger equation, Duke Math. J. 66 (1992), 521–552. R. Obaya, M. Paramio, Directional differentiability of the rotation number for the almost periodic Schrödinger equation, Duke Math. J. 66 (1992), 521–552.
127.
Zurück zum Zitat W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer-Verlag, New York, 1980. W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer-Verlag, New York, 1980.
129.
Zurück zum Zitat W. Rudin, Functional Analysis, McGraw-Hill, Singapore, 1991. W. Rudin, Functional Analysis, McGraw-Hill, Singapore, 1991.
133.
Zurück zum Zitat R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320–358. R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320–358.
135.
Zurück zum Zitat B. Scarpellini, Fourier analysis on dynamical systems, J. Differential Equations 28 (1978), 309–326. B. Scarpellini, Fourier analysis on dynamical systems, J. Differential Equations 28 (1978), 309–326.
138.
Zurück zum Zitat S. Schwarzmann, Asymptotic cycles, Ann. Math. 66 (2) (1957), 270–284. S. Schwarzmann, Asymptotic cycles, Ann. Math. 66 (2) (1957), 270–284.
145.
Zurück zum Zitat F. Sun, Kotani theory for stochastic Dirac operators, Northeastern Math. J. 9 (1) (1993), 49–62. F. Sun, Kotani theory for stochastic Dirac operators, Northeastern Math. J. 9 (1) (1993), 49–62.
148.
Zurück zum Zitat P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982. P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
149.
Zurück zum Zitat N. Wiener, A. Wintner, On the ergodic dynamics of almost periodic systems, Amer. J. Math 63 (1941), 794–824. N. Wiener, A. Wintner, On the ergodic dynamics of almost periodic systems, Amer. J. Math 63 (1941), 794–824.
Metadaten
Titel
The Weyl Functions
verfasst von
Russell Johnson
Rafael Obaya
Sylvia Novo
Carmen Núñez
Roberta Fabbri
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29025-6_4

Neuer Inhalt