Zum Inhalt

Theoretical and Practical Stefan Problems

  • 2025
  • Buch
insite
SUCHEN

Über dieses Buch

Dieser Text bietet eine moderne Einführung in die mathematische Formulierung und physikalische Anwendung von Stefan-Problemen. Mit einem sorgfältigen Gleichgewicht zwischen Theorie und Praxis eignet es sich sowohl für Doktoranden als auch für erfahrene Forscher in angewandter Mathematik, Technik, Physik und Chemie. Die Formulierung des Stefan-Problems und mehrere analytische und annähernde Lösungsmethoden werden in den ersten drei Kapiteln beschrieben. Angewandte mathematische Techniken, die für spätere Kapitel erforderlich sind, wie Nichtdimensionalisierung, Störungsmethoden und Schmiertheorie, werden ebenfalls behandelt. Die übrigen Kapitel sind spezialisierter und untersuchen Formulierungen, die über das klassische Stefan-Problem hinausgehen, beispielsweise wo die Materialeigenschaften und Phasenwechseltemperaturen variieren. Die Theorie ist immer durch physikalische Situationen und Beispiele motiviert: Phasenwechsel mit einer fließenden Flüssigkeit im Kontext von Mikroventilen und Eisbildung im Flugzeug; die Verfestigung einer unterkühlten Flüssigkeit, das Schmelzen oder Wachstum von Nanopartikeln und Nanokristallen und Phasenwechsel, wenn der Wärmefluss nicht mehr Fouriers Gesetz folgt.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Introduction
Abstract
This provides a brief description of the history of the Stefan problem, followed by the formulation of the governing equations and boundary conditions (including mushy regions) for the classical case. After a discussion of appropriate scales, the system is written in nondimensional form. Parameter values for typical phase change materials are presented, permitting the reader to better understand the physical problem. This sets the scene for subsequent chapters, where the nondimensional system is analysed in a variety of settings and, in later chapters, the governing equations are extended beyond the classical form. This chapter, and all subsequent chapters, ends with a set of exercises (solution outlines are presented at the end of the book).
Timothy G. Myers
Chapter 2. Exact and Approximate Solutions
Abstract
There exist very few exact solutions to practical Stefan problems. The key solutions are presented in the first section for both one- and two-phase systems. Approximate solution techniques are then presented, including the use of boundary fixing transformations, perturbation methods, small and large time solutions, and Heat Balance Integral Methods. The use of these methods is illustrated through the study of laser-induced sublimation. Although the book does not focus on numerical techniques, a topic that could occupy a whole book, a brief description of the main methods (with references) is presented in the final section.
Timothy G. Myers
Chapter 3. Solidification of a Thin Liquid Layer
Abstract
When dealing with thin layer flow, a key technique is the well-known lubrication theory. It is shown how the lubrication approximation is achieved through a systematic reduction of the Navier-Stokes equations. Subsequently, the equations are applied to channel and free surface flows. The channel flow version is employed to model solidification in a microchannel with a flowing fluid (in the context of phase change microvalves) and also contact melting. Aircraft ice accretion is an infamous problem in the aviation industry. The mathematical model is analogous to ice growth on any structure, such as wind turbines, power cables, structures, and ships. The final sections deal with solidification in the presence of a moving thin fluid layer with a free surface (in the context of in-flight aircraft ice accretion) as well as a recent modification for ice crystal icing, which involves the enthalpy formulation.
Timothy G. Myers
Chapter 4. Variable Thermophysical Properties and Phase Change Temperature
Abstract
Up to this point the analysis has dealt with situations that fall into the category of standard Stefan problems, from now on we diverge from this by permitting changes in properties, such as the specific heat, density in each phase as well as the phase change temperature. The density jump between phases is often neglected but plays an important role – density change in confined spaces can cause damage while, in terms of the problem formulation, it induces motion in the fluid, which then introduces kinetic energy into the system. Consequently, when properties change, a new form of Stefan condition applies. Starting from conservation laws for mass, momentum, mechanical energy and total energy, a more general form for the governing equations is derived. It is shown how these may be reduced to apply to one-dimensional Cartesian and spherical problems. When the phase change temperature varies the simple one-phase Stefan problem is known to lose energy. This issue is explained and the energy conserving form presented.
Timothy G. Myers
Chapter 5. Phase Change with a Variable Interface Temperature
Abstract
Following from the new formulations of Chap. 4, here the focus is on Stefan problems where the phase change temperature is a variable. In the first section, physical reasons for this change are discussed and quantified. Models for the solidification of supercooled fluids, where the phase change temperature varies with the front velocity, are analysed for both linear and nonlinear kinetic undercooling cases. At the nanoscale, the phase change temperature may vary due to curvature-induced stress, and this effect is investigated for the melting of spherical nanoparticles and nanowires. The variable temperature effect can help explain the experimentally observed sudden disappearance of nanoparticles. An analogous problem in mass transfer, concerning the growth of nanocrystals from a monomer solution, is also presented. Here the solubility (equivalent to the phase change temperature) varies with crystal size. By introducing multiple crystals, the effect of Ostwald ripening, where smaller particles dissolve and are then consumed by larger particles, is explained.
Timothy G. Myers
Chapter 6. Non-Fourier Stefan Problems
Abstract
As electronic devices decrease in size, heat management at the nanoscale becomes a crucial issue. Nanoscale heat flow may be significantly different to that at the macroscale: At the macroscale, due to the large number of phonons and consequent frequent collisions, the process may be viewed as diffusive; at the nanoscale, thermal energy transport may be viewed as a ballistic process driven by infrequent, random collisions. The breakdown of Fourier’s law, at both small length and time scales, has been predicted theoretically, demonstrated via molecular dynamics and observed experimentally. In this chapter, we begin by analysing heat flow in a nanowire through the Guyer-Krumhansl (GK) formulation, rather than Fourier’s law. Once the GK equation has been established as a reliable descriptor of heat flow at the nanoscale, we extend the equations to deal with a one-dimensional phase change problem. Results from GK, Maxwell-Cattaneo, and Fourier models are compared for a solidifying silicon material, demonstrating a similarity in the phase change rate but significant differences in the heat flow behaviour.
Timothy G. Myers
Chapter 7. Hints to Exercises
Abstract
Substitute for the solid and liquid values: solid gold \(\tau \approx 78.54\) s, liquid gold \(\tau \approx 266\) s, ice \(\tau \approx 8572\) s, and liquid water \(\tau \approx 111,075\) s.
Timothy G. Myers
Backmatter
Titel
Theoretical and Practical Stefan Problems
Verfasst von
Timothy G. Myers
Copyright-Jahr
2025
Electronic ISBN
978-3-032-04826-4
Print ISBN
978-3-032-04825-7
DOI
https://doi.org/10.1007/978-3-032-04826-4

Die PDF-Dateien dieses Buches wurden gemäß dem PDF/UA-1-Standard erstellt, um die Barrierefreiheit zu verbessern. Dazu gehören Bildschirmlesegeräte, beschriebene nicht-textuelle Inhalte (Bilder, Grafiken), Lesezeichen für eine einfache Navigation, tastaturfreundliche Links und Formulare sowie durchsuchbarer und auswählbarer Text. Wir sind uns der Bedeutung von Barrierefreiheit bewusst und freuen uns über Anfragen zur Barrierefreiheit unserer Produkte. Bei Fragen oder Bedarf an Barrierefreiheit kontaktieren Sie uns bitte unter accessibilitysupport@springernature.com.

    Bildnachweise
    AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, NTT Data/© NTT Data, Wildix/© Wildix, arvato Systems GmbH/© arvato Systems GmbH, Ninox Software GmbH/© Ninox Software GmbH, Nagarro GmbH/© Nagarro GmbH, GWS mbH/© GWS mbH, CELONIS Labs GmbH, USU GmbH/© USU GmbH, G Data CyberDefense/© G Data CyberDefense, FAST LTA/© FAST LTA, Vendosoft/© Vendosoft, Kumavision/© Kumavision, Noriis Network AG/© Noriis Network AG, WSW Software GmbH/© WSW Software GmbH, tts GmbH/© tts GmbH, Asseco Solutions AG/© Asseco Solutions AG, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH