Skip to main content

2015 | OriginalPaper | Buchkapitel

Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity

verfasst von : Gurpaul S. Kochhar, Gavin S. Heverly-Coulson, Nicholas J. Mosey

Erschienen in: Polymer Mechanochemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487CrossRef Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487CrossRef
2.
Zurück zum Zitat Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948CrossRef Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948CrossRef
3.
Zurück zum Zitat James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447CrossRef James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447CrossRef
4.
Zurück zum Zitat Rosen BM, Percec V (2007) Mechanochemistry: a reaction to stress. Nature 446:381–382CrossRef Rosen BM, Percec V (2007) Mechanochemistry: a reaction to stress. Nature 446:381–382CrossRef
5.
Zurück zum Zitat Seidel CAM, Kühnemuth R (2014) Mechanochemistry: molecules under pressure. Nat Nanotechnol 9:164–165CrossRef Seidel CAM, Kühnemuth R (2014) Mechanochemistry: molecules under pressure. Nat Nanotechnol 9:164–165CrossRef
6.
Zurück zum Zitat Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655–1663CrossRef Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655–1663CrossRef
7.
Zurück zum Zitat Kreuzer HJ, Payne SH, Livadaru L (2001) Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys J 80:2505–2514CrossRef Kreuzer HJ, Payne SH, Livadaru L (2001) Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys J 80:2505–2514CrossRef
8.
Zurück zum Zitat Kersey FR, Yount WC, Craig SL, Carolina N (2006) Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J Am Chem Soc 128:3886–3887CrossRef Kersey FR, Yount WC, Craig SL, Carolina N (2006) Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J Am Chem Soc 128:3886–3887CrossRef
9.
Zurück zum Zitat Duwez A-S, Cuenot S, Jérôme C, Gabriel S, Jérôme R, Rapino S, Zerbetto F (2006) Mechanochemistry: targeted delivery of single molecules. Nat Nanotechnol 1:122–125CrossRef Duwez A-S, Cuenot S, Jérôme C, Gabriel S, Jérôme R, Rapino S, Zerbetto F (2006) Mechanochemistry: targeted delivery of single molecules. Nat Nanotechnol 1:122–125CrossRef
10.
Zurück zum Zitat Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346CrossRef Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346CrossRef
11.
Zurück zum Zitat Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRef Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRef
12.
Zurück zum Zitat Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228CrossRef Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228CrossRef
13.
Zurück zum Zitat Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816CrossRef Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816CrossRef
14.
Zurück zum Zitat Yang Q-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302–306CrossRef Yang Q-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302–306CrossRef
15.
Zurück zum Zitat Lundbæk JA, Collingwood SA (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7:373–395CrossRef Lundbæk JA, Collingwood SA (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7:373–395CrossRef
16.
Zurück zum Zitat Suslick KS (2004) Sonochemistry. Compr Coord Chem II 1:731–739 Suslick KS (2004) Sonochemistry. Compr Coord Chem II 1:731–739
17.
Zurück zum Zitat Basedow AM, Ebert KH (1977) Ultrasonic degradation of polymers in solution. Adv Polym Sci 22:83–148CrossRef Basedow AM, Ebert KH (1977) Ultrasonic degradation of polymers in solution. Adv Polym Sci 22:83–148CrossRef
18.
Zurück zum Zitat Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249CrossRef Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249CrossRef
19.
Zurück zum Zitat Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427CrossRef Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427CrossRef
20.
Zurück zum Zitat James SL, Friščić T (2013) Mechanochemistry. Chem Soc Rev 42:7494–7496CrossRef James SL, Friščić T (2013) Mechanochemistry. Chem Soc Rev 42:7494–7496CrossRef
21.
Zurück zum Zitat Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SAJ, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5:66–73 Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SAJ, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5:66–73
22.
Zurück zum Zitat Christinat N, To J, Schu C, Scopelliti R, Severin K (2009) Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J Am Chem Soc 131:3154–3155CrossRef Christinat N, To J, Schu C, Scopelliti R, Severin K (2009) Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J Am Chem Soc 131:3154–3155CrossRef
23.
Zurück zum Zitat Cravotto G, Cintas P (2010) Reconfiguration of stereoisomers under sonomechanical activation. Angew Chem Int Ed Engl 49:6028–6030CrossRef Cravotto G, Cintas P (2010) Reconfiguration of stereoisomers under sonomechanical activation. Angew Chem Int Ed Engl 49:6028–6030CrossRef
24.
Zurück zum Zitat Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671CrossRef Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671CrossRef
25.
Zurück zum Zitat Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci 98:468–472CrossRef Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci 98:468–472CrossRef
26.
Zurück zum Zitat Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical unfolding of a Titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849CrossRef Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical unfolding of a Titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849CrossRef
27.
Zurück zum Zitat Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub E, Gaub HE (1997) Reversible unfolding of individual Titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRef Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub E, Gaub HE (1997) Reversible unfolding of individual Titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRef
28.
29.
Zurück zum Zitat Kochhar GS, Bailey A, Mosey NJ (2010) Competition between orbitals and stress in mechanochemistry. Angew Chem Int Ed Engl 49:7452–7455CrossRef Kochhar GS, Bailey A, Mosey NJ (2010) Competition between orbitals and stress in mechanochemistry. Angew Chem Int Ed Engl 49:7452–7455CrossRef
30.
Zurück zum Zitat Ong MT, Leiding J, Tao H, Virshup AM, Martinez TJ (2009) First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc 131:6377–6379CrossRef Ong MT, Leiding J, Tao H, Virshup AM, Martinez TJ (2009) First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc 131:6377–6379CrossRef
31.
Zurück zum Zitat Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed Engl 48:4190–4193CrossRef Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed Engl 48:4190–4193CrossRef
32.
Zurück zum Zitat Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307–7312CrossRef Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307–7312CrossRef
33.
Zurück zum Zitat Friedrichs J, Lüssmann M, Frank I (2010) Conservation of orbital symmetry can be circumvented in mechanically induced reactions. Chemphyschem 11:3339–3342CrossRef Friedrichs J, Lüssmann M, Frank I (2010) Conservation of orbital symmetry can be circumvented in mechanically induced reactions. Chemphyschem 11:3339–3342CrossRef
34.
Zurück zum Zitat Ribas-Arino J, Shiga M, Marx D (2009) Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. Chem Eur J 15:13331–13335CrossRef Ribas-Arino J, Shiga M, Marx D (2009) Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. Chem Eur J 15:13331–13335CrossRef
35.
Zurück zum Zitat Makarov DE, Wang Z, Thompson JB, Hansma HG (2002) On the interpretation of force extension curves of single protein molecules. J Chem Phys 116:7760–7765CrossRef Makarov DE, Wang Z, Thompson JB, Hansma HG (2002) On the interpretation of force extension curves of single protein molecules. J Chem Phys 116:7760–7765CrossRef
36.
Zurück zum Zitat Konda SSM, Avdoshenko SM, Makarov DE (2014) Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules. J Chem Phys 140:104114CrossRef Konda SSM, Avdoshenko SM, Makarov DE (2014) Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules. J Chem Phys 140:104114CrossRef
37.
Zurück zum Zitat Bailey A, Mosey NJ (2012) Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J Chem Phys 136:044102CrossRef Bailey A, Mosey NJ (2012) Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J Chem Phys 136:044102CrossRef
38.
Zurück zum Zitat Beyer MK (2003) Coupling of mechanical and chemical energy: proton affinity as a function of external force. Angew Chem Int Ed Engl 42:4913–4915CrossRef Beyer MK (2003) Coupling of mechanical and chemical energy: proton affinity as a function of external force. Angew Chem Int Ed Engl 42:4913–4915CrossRef
39.
Zurück zum Zitat Lupton EM, Achenbach F, Weis J, Bräuchle C, Frank I (2006) Modified chemistry of siloxanes under tensile stress: interaction with environment. J Phys Chem B 110:14557–14563CrossRef Lupton EM, Achenbach F, Weis J, Bräuchle C, Frank I (2006) Modified chemistry of siloxanes under tensile stress: interaction with environment. J Phys Chem B 110:14557–14563CrossRef
40.
Zurück zum Zitat Lupton EM, Nonnenberg C, Frank I, Achenbach F, Weis J, Bräuchle C (2005) Stretching siloxanes: an ab initio molecular dynamics study. Chem Phys Lett 414:132–137CrossRef Lupton EM, Nonnenberg C, Frank I, Achenbach F, Weis J, Bräuchle C (2005) Stretching siloxanes: an ab initio molecular dynamics study. Chem Phys Lett 414:132–137CrossRef
41.
Zurück zum Zitat Aktah D, Frank I (2002) Breaking bonds by mechanical stress: when do electrons decide for the other side? J Am Chem Soc 124:3402–3406CrossRef Aktah D, Frank I (2002) Breaking bonds by mechanical stress: when do electrons decide for the other side? J Am Chem Soc 124:3402–3406CrossRef
42.
Zurück zum Zitat Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060CrossRef Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060CrossRef
43.
Zurück zum Zitat Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222–3225CrossRef Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222–3225CrossRef
44.
Zurück zum Zitat Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559CrossRef Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559CrossRef
45.
Zurück zum Zitat Konôpka M, Turanský R, Reichert J, Fuchs H, Marx D, Štich I (2008) Mechanochemistry and thermochemistry are different: stress-induced strengthening of chemical bonds. Phys Rev Lett 100:115503CrossRef Konôpka M, Turanský R, Reichert J, Fuchs H, Marx D, Štich I (2008) Mechanochemistry and thermochemistry are different: stress-induced strengthening of chemical bonds. Phys Rev Lett 100:115503CrossRef
46.
Zurück zum Zitat Dopieralski P, Anjukandi P, Rückert M, Shiga M, Ribas-Arino J, Marx D (2011) On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J Mater Chem 21:8309–8316 Dopieralski P, Anjukandi P, Rückert M, Shiga M, Ribas-Arino J, Marx D (2011) On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J Mater Chem 21:8309–8316
47.
Zurück zum Zitat Ribas-arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609–10614CrossRef Ribas-arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609–10614CrossRef
48.
Zurück zum Zitat Harrison JA, Gao G, Schall JD, Knippenberg MT, Mikulski PT (2008) Friction between solids. Philos Trans R Socient A 366:1469–1495CrossRef Harrison JA, Gao G, Schall JD, Knippenberg MT, Mikulski PT (2008) Friction between solids. Philos Trans R Socient A 366:1469–1495CrossRef
49.
Zurück zum Zitat Mosey NJ, Muser M (2007) Atomistic modeling of friction. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, 25th ed. Wiley-VCH, New York, pp 67–124 Mosey NJ, Muser M (2007) Atomistic modeling of friction. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, 25th ed. Wiley-VCH, New York, pp 67–124
50.
Zurück zum Zitat Schlierf M, Li H, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101:7299–7304CrossRef Schlierf M, Li H, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101:7299–7304CrossRef
51.
Zurück zum Zitat Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678CrossRef Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678CrossRef
52.
Zurück zum Zitat Potisek SL, Davis DA, Sottos NR, White SR, Moore JS (2007) Mechanophore-linked addition polymers. J Am Chem Soc 129:13808–13809CrossRef Potisek SL, Davis DA, Sottos NR, White SR, Moore JS (2007) Mechanophore-linked addition polymers. J Am Chem Soc 129:13808–13809CrossRef
53.
Zurück zum Zitat Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727–1730CrossRef Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727–1730CrossRef
54.
Zurück zum Zitat Freitas A, Sharma M (2001) Detachment of particles from surfaces: an AFM study. J Colloid Interface Sci 233:73–82CrossRef Freitas A, Sharma M (2001) Detachment of particles from surfaces: an AFM study. J Colloid Interface Sci 233:73–82CrossRef
55.
Zurück zum Zitat Iozzi MF, Helgaker T, Uggerud E (2009) Assessment of theoretical methods for the determination of the mechanochemical strength of covalent bonds. Mol Phys 107:2537–2546CrossRef Iozzi MF, Helgaker T, Uggerud E (2009) Assessment of theoretical methods for the determination of the mechanochemical strength of covalent bonds. Mol Phys 107:2537–2546CrossRef
56.
Zurück zum Zitat Su T, Purohit PK (2009) Mechanics of forced unfolding of proteins. Acta Biomater 5:1855–1863CrossRef Su T, Purohit PK (2009) Mechanics of forced unfolding of proteins. Acta Biomater 5:1855–1863CrossRef
57.
Zurück zum Zitat Ikai A, Alimujiang Y (2001) Force–extension curves of dimerized polyglutamic acid. Appl Phys A 120:117–120CrossRef Ikai A, Alimujiang Y (2001) Force–extension curves of dimerized polyglutamic acid. Appl Phys A 120:117–120CrossRef
58.
Zurück zum Zitat Davis DA, Hamilton A, Yang J et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72CrossRef Davis DA, Hamilton A, Yang J et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72CrossRef
59.
Zurück zum Zitat Zemanová M, Bleha T (2005) Isometric and isotensional force-length profiles in polymethylene chains. Macromol Theory Simulations 14:596–604CrossRef Zemanová M, Bleha T (2005) Isometric and isotensional force-length profiles in polymethylene chains. Macromol Theory Simulations 14:596–604CrossRef
60.
Zurück zum Zitat Keller D, Swigon D, Bustamante C (2003) Relating single-molecule measurements to thermodynamics. Biophys J 84:733–738CrossRef Keller D, Swigon D, Bustamante C (2003) Relating single-molecule measurements to thermodynamics. Biophys J 84:733–738CrossRef
61.
Zurück zum Zitat Paulusse JMJ, Sijbesma RP (2004) Reversible mechanochemistry of a Pd(II) coordination polymer. Angew Chem Int Ed Engl 43:4460–4462CrossRef Paulusse JMJ, Sijbesma RP (2004) Reversible mechanochemistry of a Pd(II) coordination polymer. Angew Chem Int Ed Engl 43:4460–4462CrossRef
62.
Zurück zum Zitat Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP (2008) Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc 130:14968–14969CrossRef Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP (2008) Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc 130:14968–14969CrossRef
63.
Zurück zum Zitat Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137CrossRef Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137CrossRef
64.
Zurück zum Zitat Izailev S, Stepaniants S et al (1999) Steered molecular dynamics. In: Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) Computational molecular dynamics: challenges, methods, ideas, vol 4. Springer, New York, pp 39–65CrossRef Izailev S, Stepaniants S et al (1999) Steered molecular dynamics. In: Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) Computational molecular dynamics: challenges, methods, ideas, vol 4. Springer, New York, pp 39–65CrossRef
65.
Zurück zum Zitat Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581CrossRef Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581CrossRef
66.
Zurück zum Zitat Grubmuiller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999CrossRef Grubmuiller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999CrossRef
67.
Zurück zum Zitat Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19:13–25CrossRef Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19:13–25CrossRef
68.
Zurück zum Zitat Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230CrossRef Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230CrossRef
69.
Zurück zum Zitat Stepaniants S, Izrailev S, Schulten K (1997) Extraction of lipids from phospholipid membranes by steered molecular dynamics. J Mol Model 3:473–475CrossRef Stepaniants S, Izrailev S, Schulten K (1997) Extraction of lipids from phospholipid membranes by steered molecular dynamics. J Mol Model 3:473–475CrossRef
70.
Zurück zum Zitat Silberstein MN, Cremar LD, Beiermann BA, Kramer SB, Martinez TJ, White SR, Sottos NR (2014) Modeling mechanophore activation within a viscous rubbery network. J Mech Phys Solids 63:141–153CrossRef Silberstein MN, Cremar LD, Beiermann BA, Kramer SB, Martinez TJ, White SR, Sottos NR (2014) Modeling mechanophore activation within a viscous rubbery network. J Mech Phys Solids 63:141–153CrossRef
71.
Zurück zum Zitat Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628CrossRef Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628CrossRef
72.
Zurück zum Zitat Franco I, George CB, Solomon GC, Schatz GC, Ratner MA (2011) Mechanically activated molecular switch through single-molecule pulling. J Am Chem Soc 133:2242–2249CrossRef Franco I, George CB, Solomon GC, Schatz GC, Ratner MA (2011) Mechanically activated molecular switch through single-molecule pulling. J Am Chem Soc 133:2242–2249CrossRef
73.
Zurück zum Zitat Franco I, Schatz GC, Ratner MA (2009) Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation. J Chem Phys 131:124902CrossRef Franco I, Schatz GC, Ratner MA (2009) Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation. J Chem Phys 131:124902CrossRef
74.
Zurück zum Zitat Paturej J, Kuban L, Milchev A, Vilgis TA (2012) Tension enhancement in branched macromolecules upon adhesion on a solid substrate. Europhys Lett 97:58003CrossRef Paturej J, Kuban L, Milchev A, Vilgis TA (2012) Tension enhancement in branched macromolecules upon adhesion on a solid substrate. Europhys Lett 97:58003CrossRef
75.
Zurück zum Zitat Ghosh A, Dimitrov DI, Rostiashvili VG, Milchev A, Vilgis TA (2010) Thermal breakage and self-healing of a polymer chain under tensile stress. J Chem Phys 132:204902CrossRef Ghosh A, Dimitrov DI, Rostiashvili VG, Milchev A, Vilgis TA (2010) Thermal breakage and self-healing of a polymer chain under tensile stress. J Chem Phys 132:204902CrossRef
76.
Zurück zum Zitat Paturej J, Milchev A, Rostiashvili VG, Vilgis TA (2011) Polymer chain scission at constant tension – an example of force-induced collective behaviour. Europhys Lett 94:48003CrossRef Paturej J, Milchev A, Rostiashvili VG, Vilgis TA (2011) Polymer chain scission at constant tension – an example of force-induced collective behaviour. Europhys Lett 94:48003CrossRef
77.
Zurück zum Zitat Paturej J, Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2014) Force spectroscopy of polymer desorption: theory and molecular dynamics simulation. Soft Matter 10:2785–2799CrossRef Paturej J, Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2014) Force spectroscopy of polymer desorption: theory and molecular dynamics simulation. Soft Matter 10:2785–2799CrossRef
78.
Zurück zum Zitat Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127CrossRef Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127CrossRef
79.
Zurück zum Zitat Li W, Gräter F (2010) Atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J Am Chem Soc 132:16790–16795CrossRef Li W, Gräter F (2010) Atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J Am Chem Soc 132:16790–16795CrossRef
80.
Zurück zum Zitat Baldus IB, Gräter F (2012) Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys J 102:622–629CrossRef Baldus IB, Gräter F (2012) Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys J 102:622–629CrossRef
81.
Zurück zum Zitat Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRef Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRef
82.
Zurück zum Zitat Smalø HS, Uggerud E (2013) Breaking covalent bonds using mechanical force, which bond breaks? Mol Phys 111:1563–1573CrossRef Smalø HS, Uggerud E (2013) Breaking covalent bonds using mechanical force, which bond breaks? Mol Phys 111:1563–1573CrossRef
83.
Zurück zum Zitat Smalø HS, Uggerud E (2012) Ring opening vs. direct bond scission of the chain in polymeric triazoles under the influence of an external force. Chem Comm 48:10443–10445CrossRef Smalø HS, Uggerud E (2012) Ring opening vs. direct bond scission of the chain in polymeric triazoles under the influence of an external force. Chem Comm 48:10443–10445CrossRef
84.
Zurück zum Zitat Kryger MJ, Munaretto AM, Moore S (2011) Structure-mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992–18998CrossRef Kryger MJ, Munaretto AM, Moore S (2011) Structure-mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992–18998CrossRef
85.
Zurück zum Zitat Lourderaj U, McAfee JL, Hase WL (2008) Potential energy surface and unimolecular dynamics of stretched n-butane. J Chem Phys 129:094701CrossRef Lourderaj U, McAfee JL, Hase WL (2008) Potential energy surface and unimolecular dynamics of stretched n-butane. J Chem Phys 129:094701CrossRef
86.
Zurück zum Zitat Schmidt SW, Beyer MK, Clausen-Schaumann H (2008) Dynamic strength of the silicon-carbon bond observed over three decades of force-loading rates. J Am Chem Soc 130:3664–3668CrossRef Schmidt SW, Beyer MK, Clausen-Schaumann H (2008) Dynamic strength of the silicon-carbon bond observed over three decades of force-loading rates. J Am Chem Soc 130:3664–3668CrossRef
87.
Zurück zum Zitat Iozzi MF, Helgaker T, Uggerud E (2011) Influence of external force on properties and reactivity of disulfide bonds. J Phys Chem A 115:2308–3215CrossRef Iozzi MF, Helgaker T, Uggerud E (2011) Influence of external force on properties and reactivity of disulfide bonds. J Phys Chem A 115:2308–3215CrossRef
88.
Zurück zum Zitat Groote R, Szyja M, Pidko EA, Hensen EJM, Sijbesma RP (2011) Unfolding and mechanochemical scission of supramolecular polymers containing a metal-ligand coordination bond. Macromolecules 44:9187–9195CrossRef Groote R, Szyja M, Pidko EA, Hensen EJM, Sijbesma RP (2011) Unfolding and mechanochemical scission of supramolecular polymers containing a metal-ligand coordination bond. Macromolecules 44:9187–9195CrossRef
89.
Zurück zum Zitat Shiraki T, Diesendruck CE, Moore JS (2014) The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discuss. doi:10.1039/C4FD00027G Shiraki T, Diesendruck CE, Moore JS (2014) The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discuss. doi:10.​1039/​C4FD00027G
90.
Zurück zum Zitat Krüger D, Rousseau R, Fuchs H, Marx D (2003) Towards “mechanochemistry”: mechanically induced isomerizations of thiolate-gold clusters. Angew Chem Int Ed Engl 42:2251–2253CrossRef Krüger D, Rousseau R, Fuchs H, Marx D (2003) Towards “mechanochemistry”: mechanically induced isomerizations of thiolate-gold clusters. Angew Chem Int Ed Engl 42:2251–2253CrossRef
91.
Zurück zum Zitat Huang Z, Yang Q, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R (2009) Method to derive restoring forces of strained molecules from kinetic measurements. J Am Chem Soc 131:1407–1409CrossRef Huang Z, Yang Q, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R (2009) Method to derive restoring forces of strained molecules from kinetic measurements. J Am Chem Soc 131:1407–1409CrossRef
92.
Zurück zum Zitat Kucharski TJ, Yang Q-Z, Tian Y, Boulatov R (2010) Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J Phys Chem Lett 1:2820–2825CrossRef Kucharski TJ, Yang Q-Z, Tian Y, Boulatov R (2010) Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J Phys Chem Lett 1:2820–2825CrossRef
93.
Zurück zum Zitat Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chemie 121:7174–7177CrossRef Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chemie 121:7174–7177CrossRef
94.
Zurück zum Zitat Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed Engl 52:6992–6995CrossRef Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed Engl 52:6992–6995CrossRef
95.
Zurück zum Zitat Akbulatov S, Tian Y, Boulatov R (2012) Force−reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620–7623CrossRef Akbulatov S, Tian Y, Boulatov R (2012) Force−reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620–7623CrossRef
96.
Zurück zum Zitat Tian Y, Kucharski TJ, Yang Q-Z, Boulatov R (2013) Model studies of force-dependent kinetics of multi-barrier reactions. Nat Commun 4:2538CrossRef Tian Y, Kucharski TJ, Yang Q-Z, Boulatov R (2013) Model studies of force-dependent kinetics of multi-barrier reactions. Nat Commun 4:2538CrossRef
97.
Zurück zum Zitat Kucharski TJ, Boulatov R (2011) The physical chemistry of mechanoresponsive polymers. J Mater Chem 21:8237–8255CrossRef Kucharski TJ, Boulatov R (2011) The physical chemistry of mechanoresponsive polymers. J Mater Chem 21:8237–8255CrossRef
98.
Zurück zum Zitat Hermes M, Boulatov R (2011) The entropic and enthalpic contributions to force-dependent dissociation kinetics of the pyrophosphate bond. J Am Chem Soc 133(50):20044–20047CrossRef Hermes M, Boulatov R (2011) The entropic and enthalpic contributions to force-dependent dissociation kinetics of the pyrophosphate bond. J Am Chem Soc 133(50):20044–20047CrossRef
99.
Zurück zum Zitat Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRef Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRef
100.
Zurück zum Zitat Hofbauer F, Frank I (2010) Disulfide bond cleavage: a redox reaction without electron transfer. Chem Eur J 16:5097–5101CrossRef Hofbauer F, Frank I (2010) Disulfide bond cleavage: a redox reaction without electron transfer. Chem Eur J 16:5097–5101CrossRef
101.
Zurück zum Zitat Hofbauer F, Frank I (2012) CPMD simulation of a bimolecular chemical reaction: nucleophilic attack of a disulfide bond under mechanical stress. Chem Eur J 18:16332–16338CrossRef Hofbauer F, Frank I (2012) CPMD simulation of a bimolecular chemical reaction: nucleophilic attack of a disulfide bond under mechanical stress. Chem Eur J 18:16332–16338CrossRef
102.
Zurück zum Zitat Krupička M, Sander W, Marx D (2014) Mechanical manipulation of chemical reactions: reactivity switching of Bergman cyclizations. J Phys Chem Lett 5:905–909CrossRef Krupička M, Sander W, Marx D (2014) Mechanical manipulation of chemical reactions: reactivity switching of Bergman cyclizations. J Phys Chem Lett 5:905–909CrossRef
103.
Zurück zum Zitat Stauch T, Dreuw A (2014) Force-spectrum relations for molecular optical force probes. Angew Chem Int Ed Engl 53:2759–2761CrossRef Stauch T, Dreuw A (2014) Force-spectrum relations for molecular optical force probes. Angew Chem Int Ed Engl 53:2759–2761CrossRef
104.
Zurück zum Zitat Smalø HS, Rybkin VV, Klopper W, Helgaker T, Uggerud E (2014) Mechanochemistry: the effect of dynamics. J Phys Chem A 118:7683–7694CrossRef Smalø HS, Rybkin VV, Klopper W, Helgaker T, Uggerud E (2014) Mechanochemistry: the effect of dynamics. J Phys Chem A 118:7683–7694CrossRef
105.
Zurück zum Zitat Schmidt M, Baldridge K (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRef Schmidt M, Baldridge K (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRef
106.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Wallingford
107.
Zurück zum Zitat Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125CrossRef Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125CrossRef
108.
Zurück zum Zitat Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627CrossRef Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627CrossRef
109.
Zurück zum Zitat Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Kiss J, Marx D (2013) The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nat Chem 5:685–691CrossRef Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Kiss J, Marx D (2013) The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nat Chem 5:685–691CrossRef
110.
Zurück zum Zitat Lele TP, Thodeti CK, Ingber DE (2006) Force meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching. J Cell Biochem 97:1175–1183CrossRef Lele TP, Thodeti CK, Ingber DE (2006) Force meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching. J Cell Biochem 97:1175–1183CrossRef
111.
Zurück zum Zitat Greenberg MJ, Moore JR (2010) The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67:273–285CrossRef Greenberg MJ, Moore JR (2010) The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67:273–285CrossRef
112.
Zurück zum Zitat Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748CrossRef Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748CrossRef
113.
Zurück zum Zitat Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555CrossRef Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555CrossRef
114.
Zurück zum Zitat Evans E (2001) Probing the relation between force-lifetime and chemistry. Annu Rev Biophys Biomol Struct 30:105–128CrossRef Evans E (2001) Probing the relation between force-lifetime and chemistry. Annu Rev Biophys Biomol Struct 30:105–128CrossRef
115.
Zurück zum Zitat Konda SSM, Brantley JN, Bielawski CW, Makarov DE (2011) Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135:164103CrossRef Konda SSM, Brantley JN, Bielawski CW, Makarov DE (2011) Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135:164103CrossRef
116.
Zurück zum Zitat Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J Am Chem Soc 135:12722–12729CrossRef Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J Am Chem Soc 135:12722–12729CrossRef
117.
Zurück zum Zitat Brantley JN, Konda SSM, Makarov DE, Bielawski CW (2012) Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J Am Chem Soc 134:9882–9885CrossRef Brantley JN, Konda SSM, Makarov DE, Bielawski CW (2012) Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J Am Chem Soc 134:9882–9885CrossRef
118.
Zurück zum Zitat Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Comm 49:4187–4189CrossRef Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Comm 49:4187–4189CrossRef
119.
Zurück zum Zitat Hsu SM, Zhang J, Yin Z (2002) The nature and origin of tribochemistry. Tribol Lett 13:131–139CrossRef Hsu SM, Zhang J, Yin Z (2002) The nature and origin of tribochemistry. Tribol Lett 13:131–139CrossRef
120.
Zurück zum Zitat Kajdas C (2013) General approach to mechanochemistry and its relations to tribochemistry. In: Pihtili H (ed) Tribology in engineering. InTech, pp 209–240 Kajdas C (2013) General approach to mechanochemistry and its relations to tribochemistry. In: Pihtili H (ed) Tribology in engineering. InTech, pp 209–240
121.
Zurück zum Zitat Liang T, Sawyer WG, Perry SS, Sinnott SB, Phillpot SR (2008) First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys Rev B 77:104105CrossRef Liang T, Sawyer WG, Perry SS, Sinnott SB, Phillpot SR (2008) First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys Rev B 77:104105CrossRef
122.
Zurück zum Zitat Smith GS, Modine NA, Waghmare UV, Kaxiras E (1998) First-principles study of static nanoscale friction between MoO3. J Comput Mater Des 5:61–71CrossRef Smith GS, Modine NA, Waghmare UV, Kaxiras E (1998) First-principles study of static nanoscale friction between MoO3. J Comput Mater Des 5:61–71CrossRef
123.
Zurück zum Zitat Modine NA, Zumbach G, Kaxiras E (1997) Adaptive-coordinate real-space electronic structure calculations for atoms, molecules, and solids. Phys Rev B 55:10289CrossRef Modine NA, Zumbach G, Kaxiras E (1997) Adaptive-coordinate real-space electronic structure calculations for atoms, molecules, and solids. Phys Rev B 55:10289CrossRef
124.
Zurück zum Zitat Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5:1921–1929CrossRef Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5:1921–1929CrossRef
125.
Zurück zum Zitat Zilibotti G, Righi MC (2011) Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27:6862–6867CrossRef Zilibotti G, Righi MC (2011) Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27:6862–6867CrossRef
126.
Zurück zum Zitat Wang J, Want F, Li J, Sun Q, Yuan P, Jia Y (2013) Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: a first-principles investigation. Surf Sci 608:74–79CrossRef Wang J, Want F, Li J, Sun Q, Yuan P, Jia Y (2013) Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: a first-principles investigation. Surf Sci 608:74–79CrossRef
127.
Zurück zum Zitat Wang L-F, Ma T-B, Hu Y-Z, Wang H (2012) Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys Rev B 86:125436CrossRef Wang L-F, Ma T-B, Hu Y-Z, Wang H (2012) Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys Rev B 86:125436CrossRef
128.
Zurück zum Zitat Wang L-F, Ma T-B, Hu Y-Z, Wang H, Shao T-M (2013) Ab initio study of the friction mechanism of fluorographene and graphane. J Phys Chem C 117:12520–12525CrossRef Wang L-F, Ma T-B, Hu Y-Z, Wang H, Shao T-M (2013) Ab initio study of the friction mechanism of fluorographene and graphane. J Phys Chem C 117:12520–12525CrossRef
129.
Zurück zum Zitat Leven I, Krepel D, Shemesh O, Hod O (2013) Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett 4:115–120CrossRef Leven I, Krepel D, Shemesh O, Hod O (2013) Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett 4:115–120CrossRef
130.
Zurück zum Zitat Hod O (2013) The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14:2376–2391CrossRef Hod O (2013) The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14:2376–2391CrossRef
131.
Zurück zum Zitat Zhong W, Tománek D (1990) First-principles theory of atomic-scale friction. Phys Rev Lett 64:3054–3057CrossRef Zhong W, Tománek D (1990) First-principles theory of atomic-scale friction. Phys Rev Lett 64:3054–3057CrossRef
132.
Zurück zum Zitat Neitola R, Pakkanen TA (2001) Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J Phys Chem B 105:1338–1343CrossRef Neitola R, Pakkanen TA (2001) Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J Phys Chem B 105:1338–1343CrossRef
133.
Zurück zum Zitat Koskilinna JO, Linnolahti M, Pakkanen TA (2005) Tribochemical reactions between methylated diamond (111) surfaces: a theoretical study. Tribol Lett 20:157–161CrossRef Koskilinna JO, Linnolahti M, Pakkanen TA (2005) Tribochemical reactions between methylated diamond (111) surfaces: a theoretical study. Tribol Lett 20:157–161CrossRef
134.
Zurück zum Zitat Neitola R, Pakkanen TA (2006) Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory. J Phys Chem B 110:16660–16665CrossRef Neitola R, Pakkanen TA (2006) Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory. J Phys Chem B 110:16660–16665CrossRef
135.
Zurück zum Zitat Neitola R, Pakkanen TA (2004) Ab initio studies on the atomic-scale origin of friction between hydrocarbon layers. Chem Phys 299:47–56CrossRef Neitola R, Pakkanen TA (2004) Ab initio studies on the atomic-scale origin of friction between hydrocarbon layers. Chem Phys 299:47–56CrossRef
136.
Zurück zum Zitat Neitola R, Ruuska H, Pakkanen TA (2005) Ab initio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J Phys Chem B 109:10348–10354CrossRef Neitola R, Ruuska H, Pakkanen TA (2005) Ab initio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J Phys Chem B 109:10348–10354CrossRef
137.
Zurück zum Zitat Koskilinna JO, Linnolahti M, Pakkanen TA (2007) Friction paths for cubic boron nitride: an ab initio study. Tribol Lett 27:145–154CrossRef Koskilinna JO, Linnolahti M, Pakkanen TA (2007) Friction paths for cubic boron nitride: an ab initio study. Tribol Lett 27:145–154CrossRef
138.
Zurück zum Zitat Koskilinna JO, Linnolahti M, Pakkanen TA (2008) Friction and a tribochemical reaction between ice and hexagonal boron nitride: a theoretical study. Tribol Lett 29:163–167CrossRef Koskilinna JO, Linnolahti M, Pakkanen TA (2008) Friction and a tribochemical reaction between ice and hexagonal boron nitride: a theoretical study. Tribol Lett 29:163–167CrossRef
139.
Zurück zum Zitat Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104CrossRef Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104CrossRef
140.
Zurück zum Zitat Liao P, Carter EA (2010) Ab initio density functional theory+U predictions of the shear response of iron oxides. Acta Mater 58:5912–5925CrossRef Liao P, Carter EA (2010) Ab initio density functional theory+U predictions of the shear response of iron oxides. Acta Mater 58:5912–5925CrossRef
141.
Zurück zum Zitat Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129:014103CrossRef Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129:014103CrossRef
142.
Zurück zum Zitat Mosey NJ, Carter EA (2009) Shear strength of chromia across multiple length scales: An LDA+U study. Acta Mater 57:2933–2943CrossRef Mosey NJ, Carter EA (2009) Shear strength of chromia across multiple length scales: An LDA+U study. Acta Mater 57:2933–2943CrossRef
143.
Zurück zum Zitat Mills G, Jónsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72:1124–1127CrossRef Mills G, Jónsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72:1124–1127CrossRef
144.
Zurück zum Zitat Mills G, Jónsson H, Schenter G (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337CrossRef Mills G, Jónsson H, Schenter G (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337CrossRef
145.
Zurück zum Zitat Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Class Quantum Dyn Condens Phase Simulations. World Scientific, Singapore, pp 385–404 Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Class Quantum Dyn Condens Phase Simulations. World Scientific, Singapore, pp 385–404
146.
Zurück zum Zitat Caspersen KJ, Carter EA (2005) Finding transition states for crystalline solid-solid phase transformations. Proc Natl Acad Sci 102:6738–6743CrossRef Caspersen KJ, Carter EA (2005) Finding transition states for crystalline solid-solid phase transformations. Proc Natl Acad Sci 102:6738–6743CrossRef
147.
Zurück zum Zitat Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904CrossRef Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904CrossRef
148.
Zurück zum Zitat Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136:074103CrossRef Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136:074103CrossRef
149.
Zurück zum Zitat Trinkle D, Hennig R, Srinivasan S, Hatch D, Jones M, Stokes H, Albers R, Wilkins J (2003) New mechanism for the α to ω martensitic transformation in pure titanium. Phys Rev Lett 91:025701CrossRef Trinkle D, Hennig R, Srinivasan S, Hatch D, Jones M, Stokes H, Albers R, Wilkins J (2003) New mechanism for the α to ω martensitic transformation in pure titanium. Phys Rev Lett 91:025701CrossRef
150.
Zurück zum Zitat Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the α to ω martensitic transformation in titanium. Nat Mater 4:129–133CrossRef Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the α to ω martensitic transformation in titanium. Nat Mater 4:129–133CrossRef
151.
Zurück zum Zitat Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRef Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRef
152.
Zurück zum Zitat Liu J, Johnson D (2009) bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: coupled shuffle and shear modes. Phys Rev B 79:134113 Liu J, Johnson D (2009) bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: coupled shuffle and shear modes. Phys Rev B 79:134113
153.
Zurück zum Zitat Xiao P, Henkelman G (2012) Communication: from graphite to diamond: reaction pathways of the phase transition. J Chem Phys 137:101101CrossRef Xiao P, Henkelman G (2012) Communication: from graphite to diamond: reaction pathways of the phase transition. J Chem Phys 137:101101CrossRef
154.
Zurück zum Zitat Vu NH, Le HV, Cao TM, Pham VV, Le HM, Nguyen-Manh D (2012) Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach. J Phys Condens Matter 24:405501CrossRef Vu NH, Le HV, Cao TM, Pham VV, Le HM, Nguyen-Manh D (2012) Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach. J Phys Condens Matter 24:405501CrossRef
155.
Zurück zum Zitat Dong X, Zhou X-F, Qian G-R, Zhao Z, Tian Y, Wang H-T (2013) An ab initio study on the transition paths from graphite to diamond under pressure. J Phys Condens Matter 25:145402CrossRef Dong X, Zhou X-F, Qian G-R, Zhao Z, Tian Y, Wang H-T (2013) An ab initio study on the transition paths from graphite to diamond under pressure. J Phys Condens Matter 25:145402CrossRef
156.
Zurück zum Zitat Xiao P, Cheng J-G, Zhou J-S, Goodenough JB, Henkelman G (2013) Mechanism of the CaIrO3 post-perovskite phase transition under pressure. Phys Rev B 88:144102CrossRef Xiao P, Cheng J-G, Zhou J-S, Goodenough JB, Henkelman G (2013) Mechanism of the CaIrO3 post-perovskite phase transition under pressure. Phys Rev B 88:144102CrossRef
157.
Zurück zum Zitat Dai Y, Ni S, Li Z, Yang J (2013) Diffusion and desorption of oxygen atoms on graphene. J Phys Condens Matter 25:405301CrossRef Dai Y, Ni S, Li Z, Yang J (2013) Diffusion and desorption of oxygen atoms on graphene. J Phys Condens Matter 25:405301CrossRef
158.
Zurück zum Zitat Briquet LGV, Wirtz T, Philipp P (2013) First principles investigation of Ti adsorption and migration on Si(100) surfaces. J Appl Phys 114:243505CrossRef Briquet LGV, Wirtz T, Philipp P (2013) First principles investigation of Ti adsorption and migration on Si(100) surfaces. J Appl Phys 114:243505CrossRef
159.
Zurück zum Zitat Jennings PC, Aleksandrov HA, Neyman KM, Johnston RL (2014) A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6:1153–1165CrossRef Jennings PC, Aleksandrov HA, Neyman KM, Johnston RL (2014) A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6:1153–1165CrossRef
160.
Zurück zum Zitat Harrison JA, White CT, Colton RJ, Brenner DW (1992) Molecular-dynamics simulation of atomic-scale friction of diamond surfaces. Phys Rev B 46:9700–9708CrossRef Harrison JA, White CT, Colton RJ, Brenner DW (1992) Molecular-dynamics simulation of atomic-scale friction of diamond surfaces. Phys Rev B 46:9700–9708CrossRef
161.
Zurück zum Zitat Harrison JA, Colton RJ, White CT, Brenner DW (1993) Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168:127–133CrossRef Harrison JA, Colton RJ, White CT, Brenner DW (1993) Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168:127–133CrossRef
162.
Zurück zum Zitat Harrison JA, White CT, Colton RJ, Brenner DW (1995) Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 260:205–211CrossRef Harrison JA, White CT, Colton RJ, Brenner DW (1995) Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 260:205–211CrossRef
163.
Zurück zum Zitat Gao G, Cannara RJ, Carpick RW, Harrison JA (2007) Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23:5394–5405CrossRef Gao G, Cannara RJ, Carpick RW, Harrison JA (2007) Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23:5394–5405CrossRef
164.
Zurück zum Zitat Yue D-C, Ma T-B, Hu Y-Z, Yeon J, van Duin ACT, Wang H, Luo J (2013) Tribochemistry of phosphoric acid sheared between quartz surfaces: a reactive molecular dynamics study. J Phys Chem C 117:25604–25614CrossRef Yue D-C, Ma T-B, Hu Y-Z, Yeon J, van Duin ACT, Wang H, Luo J (2013) Tribochemistry of phosphoric acid sheared between quartz surfaces: a reactive molecular dynamics study. J Phys Chem C 117:25604–25614CrossRef
165.
Zurück zum Zitat Carkner CJ, Mosey NJ (2010) Slip mechanisms of hydroxylated α-Al2O3 (0001)/(0001) interfaces: a first-principles molecular dynamics study. J Phys Chem C 114:17709–17719CrossRef Carkner CJ, Mosey NJ (2010) Slip mechanisms of hydroxylated α-Al2O3 (0001)/(0001) interfaces: a first-principles molecular dynamics study. J Phys Chem C 114:17709–17719CrossRef
166.
Zurück zum Zitat Carkner CJ, Haw SM, Mosey NJ (2010) Effect of adhesive interactions on static friction at the atomic scale. Phys Rev Lett 105:056102CrossRef Carkner CJ, Haw SM, Mosey NJ (2010) Effect of adhesive interactions on static friction at the atomic scale. Phys Rev Lett 105:056102CrossRef
167.
Zurück zum Zitat Haw SM, Mosey NJ (2012) Tribochemistry of aldehydes sheared between (0001) surfaces of α-alumina from first-principles molecular dynamics. J Phys Chem C 116:2132–2145CrossRef Haw SM, Mosey NJ (2012) Tribochemistry of aldehydes sheared between (0001) surfaces of α-alumina from first-principles molecular dynamics. J Phys Chem C 116:2132–2145CrossRef
168.
Zurück zum Zitat Haw SM, Mosey NJ (2011) Chemical response of aldehydes to compression between (0001) surfaces of α-alumina. J Chem Phys 134:014702CrossRef Haw SM, Mosey NJ (2011) Chemical response of aldehydes to compression between (0001) surfaces of α-alumina. J Chem Phys 134:014702CrossRef
169.
Zurück zum Zitat Bernasconi M, Chiarotti GL, Focher P, Scandolo S, Tosatti E, Parrinello M (1995) First-principle-constant pressure molecular dynamics. J Phys Chem Solids 56:501–505CrossRef Bernasconi M, Chiarotti GL, Focher P, Scandolo S, Tosatti E, Parrinello M (1995) First-principle-constant pressure molecular dynamics. J Phys Chem Solids 56:501–505CrossRef
170.
Zurück zum Zitat Wentzcovitch R (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358–2361CrossRef Wentzcovitch R (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358–2361CrossRef
171.
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684CrossRef
172.
Zurück zum Zitat Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRef Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRef
173.
Zurück zum Zitat Serra S (1999) Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science 284:788–790CrossRef Serra S (1999) Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science 284:788–790CrossRef
174.
Zurück zum Zitat Mugnai M, Pagliai M, Cardini G, Schettino V (2008) Mechanism of the ethylene polymerization at very high pressure. J Chem Theory Comput 4:646–651CrossRef Mugnai M, Pagliai M, Cardini G, Schettino V (2008) Mechanism of the ethylene polymerization at very high pressure. J Chem Theory Comput 4:646–651CrossRef
175.
Zurück zum Zitat Bernasconi M, Chiarotti G, Focher P, Parrinello M, Tosatti E (1997) Solid-state polymerization of acetylene under pressure: ab initio simulation. Phys Rev Lett 78:2008–2011CrossRef Bernasconi M, Chiarotti G, Focher P, Parrinello M, Tosatti E (1997) Solid-state polymerization of acetylene under pressure: ab initio simulation. Phys Rev Lett 78:2008–2011CrossRef
176.
Zurück zum Zitat Schettino V, Bini R (2007) Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 36:869–880CrossRef Schettino V, Bini R (2007) Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 36:869–880CrossRef
177.
Zurück zum Zitat Mosey N, Woo T, Müser M (2005) Energy dissipation via quantum chemical hysteresis during high-pressure compression: a first-principles molecular dynamics study of phosphates. Phys Rev B 72:054124CrossRef Mosey N, Woo T, Müser M (2005) Energy dissipation via quantum chemical hysteresis during high-pressure compression: a first-principles molecular dynamics study of phosphates. Phys Rev B 72:054124CrossRef
178.
Zurück zum Zitat Mosey NJ, Müser MH, Woo TK (2005) Molecular mechanisms for the functionality of lubricant additives. Science 307:1612–1615CrossRef Mosey NJ, Müser MH, Woo TK (2005) Molecular mechanisms for the functionality of lubricant additives. Science 307:1612–1615CrossRef
179.
Zurück zum Zitat Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRef Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRef
180.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
181.
Zurück zum Zitat Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRef Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRef
Metadaten
Titel
Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity
verfasst von
Gurpaul S. Kochhar
Gavin S. Heverly-Coulson
Nicholas J. Mosey
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/128_2015_648

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.