Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Theoretical Basis of the Structural Modeling Method

verfasst von : Vladimir I. Erofeev, Igor S. Pavlov

Erschienen in: Structural Modeling of Metamaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The principles of the structural modeling method, the development of the theoretical foundations of which this monograph is devoted, are formulated in the first chapter. Moreover, the problem of the applicability of the classical mechanics laws to a theoretical description of media with micro- and nanostructure is discussed here.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For comparison—a = 0.54 nm in silicon and a = 0.57 nm in germanium.
 
Literatur
1.
Zurück zum Zitat Sedov, L.I.: Mechanics of Continuous Medium, vol. 1. World Scientific Publ, Singapore (1997) Sedov, L.I.: Mechanics of Continuous Medium, vol. 1. World Scientific Publ, Singapore (1997)
2.
Zurück zum Zitat Kunin, I.A.: Elastic Media with Microstructure, 2 volumes. Springer, Berlin (1983) Kunin, I.A.: Elastic Media with Microstructure, 2 volumes. Springer, Berlin (1983)
3.
Zurück zum Zitat Nowacki, W.: Theory of Micropolar Elasticity. J. Springer, Wien (1970) Nowacki, W.: Theory of Micropolar Elasticity. J. Springer, Wien (1970)
4.
Zurück zum Zitat Savin, G.N., Lukashev, A.A., Lysko, E.M.: Propagation of elastic waves in a solid with microstructure. Prikl. Mekh. (Appl. Mech.) 6(7), 48–52 (1970) (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M.: Propagation of elastic waves in a solid with microstructure. Prikl. Mekh. (Appl. Mech.) 6(7), 48–52 (1970) (in Russian)
5.
Zurück zum Zitat Newton, I.: Philosophical Naturalis Principia Mathematica. London, 419 p (1686) Newton, I.: Philosophical Naturalis Principia Mathematica. London, 419 p (1686)
7.
Zurück zum Zitat Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999) Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999)
8.
Zurück zum Zitat Cauchy, A.L.: Memoire sur la dispersion de la lumiere. Paris (1830) Cauchy, A.L.: Memoire sur la dispersion de la lumiere. Paris (1830)
9.
Zurück zum Zitat Powell, B.: An abstract of the essential principles of A.Cauchy’s view of the undulatory theory, leading to an explanation of the dispersion of light; with remarks. Phil. Mag. 6(3), 31 (1835) Powell, B.: An abstract of the essential principles of A.Cauchy’s view of the undulatory theory, leading to an explanation of the dispersion of light; with remarks. Phil. Mag. 6(3), 31 (1835)
10.
Zurück zum Zitat Tomson, S.W.: Popular Lectures and Addresses, vol. I. MacMilan and Co and New York, Constitution of Matter. London (1889) Tomson, S.W.: Popular Lectures and Addresses, vol. I. MacMilan and Co and New York, Constitution of Matter. London (1889)
11.
Zurück zum Zitat Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1954) Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1954)
12.
Zurück zum Zitat Brillouin, L., Parodi, M.: Wave Propagation in Periodic Structures. McGrawHill, New York (1946) Brillouin, L., Parodi, M.: Wave Propagation in Periodic Structures. McGrawHill, New York (1946)
13.
Zurück zum Zitat Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A. Hermann et Fils, Paris, 226p (1909) (Reprint, 2009) Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A. Hermann et Fils, Paris, 226p (1909) (Reprint, 2009)
14.
Zurück zum Zitat Mac Cullagh, J.: An essay towards a dynamical theory of crystalline reflection and refraction. Trans. R. Irish. Acad. Sci. 21, 17–50 (1839) Mac Cullagh, J.: An essay towards a dynamical theory of crystalline reflection and refraction. Trans. R. Irish. Acad. Sci. 21, 17–50 (1839)
15.
Zurück zum Zitat Mossoti, E.: Lezioni di Meccanica Razionale, Firenze (1851) Mossoti, E.: Lezioni di Meccanica Razionale, Firenze (1851)
16.
Zurück zum Zitat Clebsch, A.: Theorie der Elastizität tester Korper, Leipzig, 424 p (1862) Clebsch, A.: Theorie der Elastizität tester Korper, Leipzig, 424 p (1862)
17.
Zurück zum Zitat Kirchhoff, G.: Vorlesungen uber mathematische Physik, p. 466p. Mechanik, Leipzig (1874) Kirchhoff, G.: Vorlesungen uber mathematische Physik, p. 466p. Mechanik, Leipzig (1874)
18.
Zurück zum Zitat Duhem, P.: Hidrodynamique, Elasticité. Acoustique, Paris (1891) Duhem, P.: Hidrodynamique, Elasticité. Acoustique, Paris (1891)
19.
Zurück zum Zitat Hertz, K.: Die Prinzipien der Mechanik. Leipzig (1894) Hertz, K.: Die Prinzipien der Mechanik. Leipzig (1894)
20.
Zurück zum Zitat Voigt, W.: Theoretische Studien uber die Elastizitatsverhaltnisse der Krystalle. Abn. Ges.Wiss. Gottingen, vol. 34 (1887). Voigt, W.: Theoretische Studien uber die Elastizitatsverhaltnisse der Krystalle. Abn. Ges.Wiss. Gottingen, vol. 34 (1887).
21.
Zurück zum Zitat Frenkel, Ya.I.: The Kinetic Theory of Liquids. USSR Academic Press, Moscow (1945) (in Russian). Frenkel, Ya.I.: The Kinetic Theory of Liquids. USSR Academic Press, Moscow (1945) (in Russian).
22.
Zurück zum Zitat Anselm, A.I., Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Soviet Phys. JETP. 19(5), 438–446 (1949) ((in Russian)) Anselm, A.I., Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Soviet Phys. JETP. 19(5), 438–446 (1949) ((in Russian))
23.
Zurück zum Zitat Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Part 2. Dynamics of 2D and 3D lattices. JETP 19(8), 692–702 (1949) (in Russian). Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Part 2. Dynamics of 2D and 3D lattices. JETP 19(8), 692–702 (1949) (in Russian).
24.
Zurück zum Zitat Mechanics of generalized continua. Proceedings of the IUTAM-symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications. Freudenstadt and Stuttgart, 1967, ed. E. Kroner, Springer-Verlag, Berlin, Heidelberg, New York (1968) Mechanics of generalized continua. Proceedings of the IUTAM-symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications. Freudenstadt and Stuttgart, 1967, ed. E. Kroner, Springer-Verlag, Berlin, Heidelberg, New York (1968)
25.
Zurück zum Zitat Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Phys. Solid State 2, 1272–1281 (1961). Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Phys. Solid State 2, 1272–1281 (1961).
26.
Zurück zum Zitat Kuvshinskiy, E.V., Aero, E.L.: Continuum theory of asymmetric elasticity—the problem of internal rotation. Soviet Phys. Solid State 5, 1892–1897 (1964). Kuvshinskiy, E.V., Aero, E.L.: Continuum theory of asymmetric elasticity—the problem of internal rotation. Soviet Phys. Solid State 5, 1892–1897 (1964).
28.
Zurück zum Zitat Lee, J.D., Eringen, A.C.: Continuum theory of smectic liquid crystal. J. Chem. Phys. 58(10), 4203–4211 (1973) Lee, J.D., Eringen, A.C.: Continuum theory of smectic liquid crystal. J. Chem. Phys. 58(10), 4203–4211 (1973)
29.
Zurück zum Zitat Lee, J.D., Eringen, A.C.: Wave propagation in nematic liquid crystals. J. Chem. Phys. 54(12), 5027–5034 (1971) Lee, J.D., Eringen, A.C.: Wave propagation in nematic liquid crystals. J. Chem. Phys. 54(12), 5027–5034 (1971)
30.
Zurück zum Zitat Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968) Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968)
31.
Zurück zum Zitat Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 17, 113–147 (1964) Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 17, 113–147 (1964)
32.
Zurück zum Zitat Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. Konikl Acad. Wet., Ser. B67, 17 (1964) Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. Konikl Acad. Wet., Ser. B67, 17 (1964)
33.
Zurück zum Zitat Ilyushin, A.A.: Mechanics of Continuous Media. Moscow State Univ, Publ, Moscow (1990).((in Russian)) Ilyushin, A.A.: Mechanics of Continuous Media. Moscow State Univ, Publ, Moscow (1990).((in Russian))
34.
Zurück zum Zitat Ilyushin, A.A., Lomakin, V.A.: Moment theories in mechanics of solids. Strength and Plasticity. Moscow, Nauka, pp. 54–60 (1971) Ilyushin, A.A., Lomakin, V.A.: Moment theories in mechanics of solids. Strength and Plasticity. Moscow, Nauka, pp. 54–60 (1971)
35.
Zurück zum Zitat Lomakin, V.A.: Static Problems in Mechanics of Deformable Solids. Nauka, Moscow (1970).((in Russian)) Lomakin, V.A.: Static Problems in Mechanics of Deformable Solids. Nauka, Moscow (1970).((in Russian))
36.
Zurück zum Zitat Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16(7), 51–78 (1964) Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16(7), 51–78 (1964)
37.
Zurück zum Zitat Palmov, V.A.: Basic equations of the theory of asymmetrical elasticity. Prikl. Matem. Mekh. 28(3), 401–408 (1964) Palmov, V.A.: Basic equations of the theory of asymmetrical elasticity. Prikl. Matem. Mekh. 28(3), 401–408 (1964)
38.
Zurück zum Zitat Palmov, V.A.: On a model of a medium with complex structure. Prikl. Matem. Mekh. 33(4), 768–773 (1969) Palmov, V.A.: On a model of a medium with complex structure. Prikl. Matem. Mekh. 33(4), 768–773 (1969)
39.
Zurück zum Zitat Savin, G.N.: Foundations of the Plane Problem of the Couple Stress Theory of Elasticity. Izd-vo Kiev. Univ, Kiev (1965).((in Russian)) Savin, G.N.: Foundations of the Plane Problem of the Couple Stress Theory of Elasticity. Izd-vo Kiev. Univ, Kiev (1965).((in Russian))
40.
Zurück zum Zitat Toupin, R.A.: Theories of elasticity with couple-stresses Arch. Rat. Mech. Anal. 17, 85–112 (1964) Toupin, R.A.: Theories of elasticity with couple-stresses Arch. Rat. Mech. Anal. 17, 85–112 (1964)
41.
Zurück zum Zitat Truesdell, C., Toupin, R.A.: The classical field theories. Springer, Handbuch der Physik. III/I. Berlin (1960) Truesdell, C., Toupin, R.A.: The classical field theories. Springer, Handbuch der Physik. III/I. Berlin (1960)
42.
Zurück zum Zitat Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and solids. Springer, New York (1999). Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and solids. Springer, New York (1999).
43.
Zurück zum Zitat Eringen, A.C.: Nonlinear theory of continuous media, p. 477p. McGraw-Hill, New York (1962) Eringen, A.C.: Nonlinear theory of continuous media, p. 477p. McGraw-Hill, New York (1962)
44.
Zurück zum Zitat Eringen, A.C., Edelen, D.G.B.: On non-local elasticity. Int J. Eng. Sci. 10(3), 233–248 (1972) Eringen, A.C., Edelen, D.G.B.: On non-local elasticity. Int J. Eng. Sci. 10(3), 233–248 (1972)
45.
Zurück zum Zitat Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964) Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964)
46.
Zurück zum Zitat Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B. 49, 2313 (1994) Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B. 49, 2313 (1994)
47.
Zurück zum Zitat Kroner, E., Datta, B.K.: Non-local theory of elasticity for a finite inhomogeneous medium—a derivation from lattice theory. In: J. Simmons, R. de Wit (eds.) Fundamental aspects, of dislocation theory (Conference Proc.), vol. 2, pp. 737–746. National Bureau of Standards, Washington (1970) Kroner, E., Datta, B.K.: Non-local theory of elasticity for a finite inhomogeneous medium—a derivation from lattice theory. In: J. Simmons, R. de Wit (eds.) Fundamental aspects, of dislocation theory (Conference Proc.), vol. 2, pp. 737–746. National Bureau of Standards, Washington (1970)
48.
Zurück zum Zitat Krumhansl, J.A.: Some considerations of the relation between solid state physics and generalized continuum mechanics. Eur. J. Mech. A/Solids 15, 1049–1075 (1996) Krumhansl, J.A.: Some considerations of the relation between solid state physics and generalized continuum mechanics. Eur. J. Mech. A/Solids 15, 1049–1075 (1996)
49.
Zurück zum Zitat Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Rat. Mech. Anal. 43(1), 36–44 (1971) Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Rat. Mech. Anal. 43(1), 36–44 (1971)
50.
Zurück zum Zitat Green, A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3(5), 533–537 (1965) Green, A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3(5), 533–537 (1965)
51.
Zurück zum Zitat Bardenhagen, S., Triantafyllidis, N.: Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models. J. Mech. Phys. Solids. 42(1), 111–139 (1994) Bardenhagen, S., Triantafyllidis, N.: Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models. J. Mech. Phys. Solids. 42(1), 111–139 (1994)
52.
Zurück zum Zitat Lifshits, I.M.: On heat properties of chain and layered structures at low temperatures. J. Exp. Theoret. Phys. 22(4), 475–486 (1952) (in Russian) Lifshits, I.M.: On heat properties of chain and layered structures at low temperatures. J. Exp. Theoret. Phys. 22(4), 475–486 (1952) (in Russian)
53.
Zurück zum Zitat Kosevich, A.M.: 1999. The Crystal Lattice, Wiley-VCH, Berlin (1999) Kosevich, A.M.: 1999. The Crystal Lattice, Wiley-VCH, Berlin (1999)
54.
Zurück zum Zitat Leonov, M.Y.: The Mechanics of Deformations and Fracture. Ilim, Frunze (1981).((in Russian)) Leonov, M.Y.: The Mechanics of Deformations and Fracture. Ilim, Frunze (1981).((in Russian))
55.
Zurück zum Zitat Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002) Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)
56.
Zurück zum Zitat Slepyan, L.I.: On discrete models in fracture mechanics. Mech. Solids 45(6), 803–814 (2011) Slepyan, L.I.: On discrete models in fracture mechanics. Mech. Solids 45(6), 803–814 (2011)
57.
Zurück zum Zitat Korotkina, M.R.: Remark about moment stresses in discrete media. Moscow University Mechanics Bulletin. Allerton Press, Inc. no. 5, pp. 103–109 (1969) Korotkina, M.R.: Remark about moment stresses in discrete media. Moscow University Mechanics Bulletin. Allerton Press, Inc. no. 5, pp. 103–109 (1969)
58.
Zurück zum Zitat Nazarov, S.A., Paukshto, M.V.: Discrete Models and Averaging in Problems of the Elasticity Theory. Izd. Leningr. Univ, Leningrad (1984).((in Russian)) Nazarov, S.A., Paukshto, M.V.: Discrete Models and Averaging in Problems of the Elasticity Theory. Izd. Leningr. Univ, Leningrad (1984).((in Russian))
59.
Zurück zum Zitat Berinskii, I.E., Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Application of moment interaction to the construction of a stable model of graphite crystal lattice. Mech. Solids 42(5), 663–671 (2007) Berinskii, I.E., Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Application of moment interaction to the construction of a stable model of graphite crystal lattice. Mech. Solids 42(5), 663–671 (2007)
60.
Zurück zum Zitat Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Derivation of macroscopic relations of the elasticity of complex crystal lattices taking into account the moment interactions at the microlevel. J. Appl. Math. Mech. 71(4), 543–561 (2007) Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Derivation of macroscopic relations of the elasticity of complex crystal lattices taking into account the moment interactions at the microlevel. J. Appl. Math. Mech. 71(4), 543–561 (2007)
61.
Zurück zum Zitat Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003) Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003)
62.
Zurück zum Zitat Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010) Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010)
63.
Zurück zum Zitat Porubov, A.V.: Two-dimensional modeling of diatomic lattice. In: dell’Isola F. et al. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials vol. 87. Springer International Publishing AG, part of Springer Nature, pp. 263─272 (2018). https://doi.org/10.1007/978-3-319-73694-5_15 Porubov, A.V.: Two-dimensional modeling of diatomic lattice. In: dell’Isola F. et al. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials vol. 87. Springer International Publishing AG, part of Springer Nature, pp. 263─272 (2018). https://​doi.​org/​10.​1007/​978-3-319-73694-5_​15
64.
Zurück zum Zitat Porubov, A.V., Berinskii, I.E.: Nonlinear plane waves in materials having hexagonal internal structure. Int. J. Non-Linear Mech. 67, 27–33 (2014) Porubov, A.V., Berinskii, I.E.: Nonlinear plane waves in materials having hexagonal internal structure. Int. J. Non-Linear Mech. 67, 27–33 (2014)
65.
Zurück zum Zitat Porubov, A.V., Berintskii, I.E.: Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure. Math. Mech. Solids 21(1), 94–103 (2016) Porubov, A.V., Berintskii, I.E.: Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure. Math. Mech. Solids 21(1), 94–103 (2016)
66.
Zurück zum Zitat Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018) Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018)
67.
Zurück zum Zitat Porubov, A.V., Osokina, A.E.: On two-dimensional longitudinal nonlinear waves in graphene lattice. In: Berezovski A., Soomere T. (eds.) Applied Wave Mathematics II. Mathematics of Planet Earth, vol. 6, pp. 151–166. Springer, Cham (2019) Porubov, A.V., Osokina, A.E.: On two-dimensional longitudinal nonlinear waves in graphene lattice. In: Berezovski A., Soomere T. (eds.) Applied Wave Mathematics II. Mathematics of Planet Earth, vol. 6, pp. 151–166. Springer, Cham (2019)
68.
Zurück zum Zitat Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010) Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010)
69.
Zurück zum Zitat Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, 6245–6260 (2005) Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, 6245–6260 (2005)
70.
Zurück zum Zitat Vasiliev, A.A, Miroshnichenko, A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008) Vasiliev, A.A, Miroshnichenko, A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008)
71.
Zurück zum Zitat Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. Euro. J. Mech. A/Solids 46, 96–105 Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. Euro. J. Mech. A/Solids 46, 96–105
72.
Zurück zum Zitat Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583
73.
Zurück zum Zitat Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: Analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18 Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: Analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18
74.
Zurück zum Zitat Morozov, N.F., Paukshto, M.V.: On the crack simulation and solution in the lattice. ASME J. Appl. Mech. 58, 290–292 (1991) Morozov, N.F., Paukshto, M.V.: On the crack simulation and solution in the lattice. ASME J. Appl. Mech. 58, 290–292 (1991)
75.
Zurück zum Zitat Krivtsov, A.M.: Deformation and destruction of microstructured solids. Moscow, Fizmatlit Publ., 304 p. (2007) (in Russian) Krivtsov, A.M.: Deformation and destruction of microstructured solids. Moscow, Fizmatlit Publ., 304 p. (2007) (in Russian)
76.
Zurück zum Zitat Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Materi. Sci. 7, 82–93 (1996) Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Materi. Sci. 7, 82–93 (1996)
77.
Zurück zum Zitat Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solid. Part 1,2 J. Elasticity 22, 135–155, 157–183 (1989) Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solid. Part 1,2 J. Elasticity 22, 135–155, 157–183 (1989)
78.
Zurück zum Zitat Sayadi, M.K., Pouget, J.: Soliton dynamics in a microstructured lattice model. J. Phys. A: Math. Gen. 24, 2151–2172 (1991) Sayadi, M.K., Pouget, J.: Soliton dynamics in a microstructured lattice model. J. Phys. A: Math. Gen. 24, 2151–2172 (1991)
79.
Zurück zum Zitat Askar, A.: A model for coupled rotation-displacement mode of certain molecular crystals. Illustration for KNO3. J. Phys. Chem. Solids 34, 1901–1907 (1973) Askar, A.: A model for coupled rotation-displacement mode of certain molecular crystals. Illustration for KNO3. J. Phys. Chem. Solids 34, 1901–1907 (1973)
80.
Zurück zum Zitat Askar, A.: Molecular crystals and the polar theories of continua: experimential values of material coefficients for KNO3. Int. J. Eng. Sc. 10, 293–300 (1972) Askar, A.: Molecular crystals and the polar theories of continua: experimential values of material coefficients for KNO3. Int. J. Eng. Sc. 10, 293–300 (1972)
81.
Zurück zum Zitat Fisher-Hjalmars, I.: Micropolar phenomena in ordered structures. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 1–33 (1982) Fisher-Hjalmars, I.: Micropolar phenomena in ordered structures. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 1–33 (1982)
82.
Zurück zum Zitat Fujii, K., Fuka, T., Kondo, H., Ishii, K.: Orientational phase transition in molecular crystal N2. J. Phys. Soc. Jpn. 66, 125–129 (1997) Fujii, K., Fuka, T., Kondo, H., Ishii, K.: Orientational phase transition in molecular crystal N2. J. Phys. Soc. Jpn. 66, 125–129 (1997)
83.
Zurück zum Zitat Berglund, K.: Structural models of micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 35–86 (1982) Berglund, K.: Structural models of micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 35–86 (1982)
84.
Zurück zum Zitat Ugodchikov, A.G.: Moment dynamics of a linearly elastic body. Dokl. Phys. 340(1), 56–58 (1995) Ugodchikov, A.G.: Moment dynamics of a linearly elastic body. Dokl. Phys. 340(1), 56–58 (1995)
85.
Zurück zum Zitat Krylov, A.L., Mazur, N.G., Nikolayevskii, V.N., El’ , G.A.: Gradient-consistent non-linear model of the generation of ultrasound in the propagation of seismic waves. J. Appl. Math. Mech. 57(6), 1057–1066 (1993) Krylov, A.L., Mazur, N.G., Nikolayevskii, V.N., El’ , G.A.: Gradient-consistent non-linear model of the generation of ultrasound in the propagation of seismic waves. J. Appl. Math. Mech. 57(6), 1057–1066 (1993)
86.
Zurück zum Zitat Krylov, A.L., Nikolayevskii, V.N., El’ , G.A.: Mathematical model of nonlinear generation of ultrasound by seismic waves. Dokl. Akad. Nauk SSSR 318(6), 1340–1345 (1991) Krylov, A.L., Nikolayevskii, V.N., El’ , G.A.: Mathematical model of nonlinear generation of ultrasound by seismic waves. Dokl. Akad. Nauk SSSR 318(6), 1340–1345 (1991)
87.
Zurück zum Zitat Nikolaevsky, V.N.: Geomechanics and Fluidodynamics. Kluwer Academic Publishers, Dordrecht (1996) Nikolaevsky, V.N.: Geomechanics and Fluidodynamics. Kluwer Academic Publishers, Dordrecht (1996)
88.
Zurück zum Zitat Popov, V.L., Psakhie, S.G.: Theoretical aspects of computer simulation of elastic-plastic media on the basis of movable cellular automata I. Homogeneous Media. Phys. Mesomech. 3(1), 17 (2000) Popov, V.L., Psakhie, S.G.: Theoretical aspects of computer simulation of elastic-plastic media on the basis of movable cellular automata I. Homogeneous Media. Phys. Mesomech. 3(1), 17 (2000)
89.
Zurück zum Zitat Psakhie, S.G., Horie, Y., Korostelev, S.Y., Smolin, A.Y., Dmitriev, A.I., Shilko, E.V., Alekseev, S.V.: Method of movable cellular automata as a tool for simulation within the framework of mesomechanics. Russ. Phys. J. 38(11), 1157–1168 (1995). https://doi.org/10.1007/BF00559396CrossRef Psakhie, S.G., Horie, Y., Korostelev, S.Y., Smolin, A.Y., Dmitriev, A.I., Shilko, E.V., Alekseev, S.V.: Method of movable cellular automata as a tool for simulation within the framework of mesomechanics. Russ. Phys. J. 38(11), 1157–1168 (1995). https://​doi.​org/​10.​1007/​BF00559396CrossRef
90.
Zurück zum Zitat Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y.: Movable cellular automata method for simulating materials with mesostructure. Theoret. Appl. Fract. Mech. 37(1–3), 311–334 (2001) Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y.: Movable cellular automata method for simulating materials with mesostructure. Theoret. Appl. Fract. Mech. 37(1–3), 311–334 (2001)
91.
Zurück zum Zitat Smolin, AYu., Dobrynin, S.A., Psahie, S.G., Roman, N.V.: On rotation in the movable cellular automation method. Phys. Mesomech. 12(3–4), 124–129 (2009) Smolin, AYu., Dobrynin, S.A., Psahie, S.G., Roman, N.V.: On rotation in the movable cellular automation method. Phys. Mesomech. 12(3–4), 124–129 (2009)
92.
Zurück zum Zitat Smolin, AYu., Smolin, IYu., Eremina, G., Smolina, IYu.: Multiscale simulation of porous ceramics based on movable cellular automaton method. J. Phys. Conf. Ser. 894, 012087 (2017) Smolin, AYu., Smolin, IYu., Eremina, G., Smolina, IYu.: Multiscale simulation of porous ceramics based on movable cellular automaton method. J. Phys. Conf. Ser. 894, 012087 (2017)
93.
Zurück zum Zitat Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985) Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985)
94.
Zurück zum Zitat Erofeyev, V.I., Potapov, A.I.: Longitudinal strain waves in nonlinearly elastic media with couple stresses. Int. J. Non-Linear Mech. 28(4), 483–489 (1993) Erofeyev, V.I., Potapov, A.I.: Longitudinal strain waves in nonlinearly elastic media with couple stresses. Int. J. Non-Linear Mech. 28(4), 483–489 (1993)
95.
Zurück zum Zitat Erofeyev, V.I., Potapov, A.I.: Nonlinear wave processes in elastic media with inner structure. Nonlinear World, vol. 2, pp. 1197–1215. World-Scientific, Singapore (1990) Erofeyev, V.I., Potapov, A.I.: Nonlinear wave processes in elastic media with inner structure. Nonlinear World, vol. 2, pp. 1197–1215. World-Scientific, Singapore (1990)
96.
Zurück zum Zitat Gendelman, O.V., Manevitch, L.I.: Linear and nonlinear excitations in a polyethylene crystal. Part I. Vibrational modes and linear equations. Macromol. Theor. Simul. 7, 579–589 (1998) Gendelman, O.V., Manevitch, L.I.: Linear and nonlinear excitations in a polyethylene crystal. Part I. Vibrational modes and linear equations. Macromol. Theor. Simul. 7, 579–589 (1998)
97.
Zurück zum Zitat Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles. One-dimensional model. Phys. Acoust. 47(5), 666–674 (2001) Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles. One-dimensional model. Phys. Acoust. 47(5), 666–674 (2001)
98.
Zurück zum Zitat Pouget, J.: Lattice dynamics and stability of modulated-strain structures for elastic phase transitions in alloys. Phys. Rev. B. 48(2), 864–875 (1993) Pouget, J.: Lattice dynamics and stability of modulated-strain structures for elastic phase transitions in alloys. Phys. Rev. B. 48(2), 864–875 (1993)
99.
Zurück zum Zitat Sargsyan, A.H., Sargsyan, S.H.: Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations. J. Sound Vib. 333(18), 4354–4375 (2014) Sargsyan, A.H., Sargsyan, S.H.: Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations. J. Sound Vib. 333(18), 4354–4375 (2014)
100.
Zurück zum Zitat Sargsyan, S.H.: Micropolar beam model for nanocrystalline material consisting of linear chains of atoms. Phys. Mesomech. 20(4), 425–431 (2017) Sargsyan, S.H.: Micropolar beam model for nanocrystalline material consisting of linear chains of atoms. Phys. Mesomech. 20(4), 425–431 (2017)
101.
Zurück zum Zitat Sargsyan, S.H., Sargsyan, A.A.: General dynamic theory of micropolar elastic thin plates with free rotation and special features of their natural oscillations. Acoust. Phys. 57(4), 473–481 (2011) Sargsyan, S.H., Sargsyan, A.A.: General dynamic theory of micropolar elastic thin plates with free rotation and special features of their natural oscillations. Acoust. Phys. 57(4), 473–481 (2011)
102.
Zurück zum Zitat Gross, E.F.: Light scattering and relaxation phenomena in liquids Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian) Gross, E.F.: Light scattering and relaxation phenomena in liquids Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian)
103.
Zurück zum Zitat Bernal, J.D., Tamm, G.R.: Zero point energy and physical properties of H2O and D2O. Nature 135, 229 (1935) Bernal, J.D., Tamm, G.R.: Zero point energy and physical properties of H2O and D2O. Nature 135, 229 (1935)
104.
Zurück zum Zitat Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP. 16(1), 53–59 (1946) Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP. 16(1), 53–59 (1946)
105.
Zurück zum Zitat Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976).((in Russian)) Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976).((in Russian))
106.
Zurück zum Zitat Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-, meta- and orthoiodiobenzenes. JETP 20, 293–296 (1950) Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-, meta- and orthoiodiobenzenes. JETP 20, 293–296 (1950)
107.
Zurück zum Zitat Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Soviet Phys. Tech. Phys. 28, 2255 (1958) Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Soviet Phys. Tech. Phys. 28, 2255 (1958)
108.
Zurück zum Zitat Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (1970) (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (1970) (in Russian)
109.
Zurück zum Zitat Erofeyev, V.I., Rodyushkin, V.M.: Observation of the dispersion of elastic waves in a granular composite and a mathematical model for its description. Sov. Phys. Acoust. 38(6), 611–612 (1992) Erofeyev, V.I., Rodyushkin, V.M.: Observation of the dispersion of elastic waves in a granular composite and a mathematical model for its description. Sov. Phys. Acoust. 38(6), 611–612 (1992)
110.
Zurück zum Zitat Potapov, A.I., Rodyushkin, V.M.: Experimental investigation of strain waves in materials with microstructure. Acoust. Phys. 47(1), 347–352 (2001) Potapov, A.I., Rodyushkin, V.M.: Experimental investigation of strain waves in materials with microstructure. Acoust. Phys. 47(1), 347–352 (2001)
111.
Zurück zum Zitat Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, 274 p. (2001) Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, 274 p. (2001)
112.
Zurück zum Zitat Lyamov, V.E.: Polarization Effects and Anisotropy of the Interaction of Acoustic Waves in Crystals. Mosk. Gos. Univ., Moscow, 224 p. (1983) (in Russian) Lyamov, V.E.: Polarization Effects and Anisotropy of the Interaction of Acoustic Waves in Crystals. Mosk. Gos. Univ., Moscow, 224 p. (1983) (in Russian)
113.
Zurück zum Zitat Bagdoev, A.G., Erofeyev, V.I., Shekoyan, A.V.: Wave Dynamics of Generalized Continua. Advanced Structured Materials, vol. 24, 274 p. Springer, Berlin, Heidelberg (2016) Bagdoev, A.G., Erofeyev, V.I., Shekoyan, A.V.: Wave Dynamics of Generalized Continua. Advanced Structured Materials, vol. 24, 274 p. Springer, Berlin, Heidelberg (2016)
114.
Zurück zum Zitat Belyaeva, IYu., Zaitsev, VYu., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993) Belyaeva, IYu., Zaitsev, VYu., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993)
115.
Zurück zum Zitat Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999) Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999)
116.
Zurück zum Zitat Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing. New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003) Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing. New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003)
117.
Zurück zum Zitat Nazarov, V.E., Radostin, A.V. Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids. Wiley, 251 p. (2015) Nazarov, V.E., Radostin, A.V. Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids. Wiley, 251 p. (2015)
118.
Zurück zum Zitat Qiu, C., Zhang, X., Liu, Z.: Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Phys. Rev. B 71, 054302–054311 (2005) Qiu, C., Zhang, X., Liu, Z.: Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Phys. Rev. B 71, 054302–054311 (2005)
119.
Zurück zum Zitat Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State 39, 118–124 (1997) Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State 39, 118–124 (1997)
120.
Zurück zum Zitat Potapov, A.I., Pavlov, I.S.: Nonlinear waves in 1D oriented media. Acoust. Lett. 19(6), 110–115 (1996) Potapov, A.I., Pavlov, I.S.: Nonlinear waves in 1D oriented media. Acoust. Lett. 19(6), 110–115 (1996)
121.
Zurück zum Zitat Potapov, A.I., Pavlov, I.S., Gorshkov, K.A., Maugin, G.A.: Nonlinear interactions of solitary waves in a 2D lattice. Wave Motion 34(1), 83–95 (2001) Potapov, A.I., Pavlov, I.S., Gorshkov, K.A., Maugin, G.A.: Nonlinear interactions of solitary waves in a 2D lattice. Wave Motion 34(1), 83–95 (2001)
122.
Zurück zum Zitat Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic Identification of Nanocrystalline Media. J. Sound Vib. 322(3), 564–580 (2009) Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic Identification of Nanocrystalline Media. J. Sound Vib. 322(3), 564–580 (2009)
123.
Zurück zum Zitat Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010) Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010)
124.
Zurück zum Zitat Ghoniem, N.M., et al.: Multiscale modelling of nanomechanics and micromechanics: an over-view. Phil. Mag. 83(31–34), 3475–3528 (2003) Ghoniem, N.M., et al.: Multiscale modelling of nanomechanics and micromechanics: an over-view. Phil. Mag. 83(31–34), 3475–3528 (2003)
125.
Zurück zum Zitat Cleland, A.N.: Foundations of nanomechanics: from solid-state theory to device applications. Springer, Berlin (2003) Cleland, A.N.: Foundations of nanomechanics: from solid-state theory to device applications. Springer, Berlin (2003)
126.
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Inc. (2005) Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Inc. (2005)
127.
Zurück zum Zitat Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000) Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000)
128.
Zurück zum Zitat Davydov, A.S.: Quantum Mechanics, 637 p. In: Dirk ter Haar (ed.). Pergamon Press (1976) Davydov, A.S.: Quantum Mechanics, 637 p. In: Dirk ter Haar (ed.). Pergamon Press (1976)
129.
Zurück zum Zitat Rieth, M.: Nano-Engineering in Science and Technology. An Introduction to the World of Nano-Design. World Scientific, 151 p. (2003) Rieth, M.: Nano-Engineering in Science and Technology. An Introduction to the World of Nano-Design. World Scientific, 151 p. (2003)
130.
Zurück zum Zitat Golovneva, E.I., Golovnev, I.F., Fomin, V.M.: Peculiarities of application of continuum mechanics methods to the description of nano-structures. Phys. Mesomech. 8(5), 41–48 (2005) Golovneva, E.I., Golovnev, I.F., Fomin, V.M.: Peculiarities of application of continuum mechanics methods to the description of nano-structures. Phys. Mesomech. 8(5), 41–48 (2005)
132.
Zurück zum Zitat Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20(5), 123–182 (1965) Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20(5), 123–182 (1965)
133.
Zurück zum Zitat Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968) Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968)
134.
Zurück zum Zitat Li, C., Chou, T.W.: Structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003) Li, C., Chou, T.W.: Structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)
135.
Zurück zum Zitat Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov I.S. Structural modeling of nonlinear localized strain waves in generalized continua. In: Wolfgang, H., Altenbach, H., Muller, W.H., Abali, B.E. (eds.) Advanced Structured Materials. 2019/High Gradient Materials and Related Generalized Continua. Springer Nature Switzerland AG. Part of Springer, Cham, Switzerland, pp. 55–68. Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov I.S. Structural modeling of nonlinear localized strain waves in generalized continua. In: Wolfgang, H., Altenbach, H., Muller, W.H., Abali, B.E. (eds.) Advanced Structured Materials. 2019/High Gradient Materials and Related Generalized Continua. Springer Nature Switzerland AG. Part of Springer, Cham, Switzerland, pp. 55–68.
136.
Zurück zum Zitat Moshev, V.V., Garishin, O.K.: Structural mechanics of dispersedly filled elastomeric composites. Uspekhi Mekh. 3(2), 3–36 (2005) Moshev, V.V., Garishin, O.K.: Structural mechanics of dispersedly filled elastomeric composites. Uspekhi Mekh. 3(2), 3–36 (2005)
137.
Zurück zum Zitat Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010) Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010)
138.
Zurück zum Zitat Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010) Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)
139.
Zurück zum Zitat Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady Phys. 53(7), 408–412 (2008) Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady Phys. 53(7), 408–412 (2008)
140.
Zurück zum Zitat Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006) Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)
141.
Zurück zum Zitat Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vib. 384, 163–176 (2016) Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vib. 384, 163–176 (2016)
142.
Zurück zum Zitat Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society. Issue 10. Moscow: GEOS, pp. 9–16 (2009) (in Russian) Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society. Issue 10. Moscow: GEOS, pp. 9–16 (2009) (in Russian)
143.
Zurück zum Zitat Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystals: Microscopic approach. Phys. Rev. B. 33(9), 6304–6325 (1986) Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystals: Microscopic approach. Phys. Rev. B. 33(9), 6304–6325 (1986)
146.
Zurück zum Zitat Vasiliev, A.A., Pavlov, I.S.: Structural and mathematical modeling of Cosserat lattices composed of particles of finite size and with complex connections. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012079 (2018) Vasiliev, A.A., Pavlov, I.S.: Structural and mathematical modeling of Cosserat lattices composed of particles of finite size and with complex connections. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012079 (2018)
147.
Zurück zum Zitat Shermergor, T.D.: Theory of Elasticity of Micro-Inhomogeneous Media. Nauka, Moscow (1977).((in Russian)) Shermergor, T.D.: Theory of Elasticity of Micro-Inhomogeneous Media. Nauka, Moscow (1977).((in Russian))
148.
Zurück zum Zitat Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000) Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)
149.
Zurück zum Zitat Solyaev, Yu., Lurie, S.: Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Compos. Struct. 202, 1099–1108 (2018) Solyaev, Yu., Lurie, S.: Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Compos. Struct. 202, 1099–1108 (2018)
150.
Zurück zum Zitat Gulyaev, Yu.V., Lagar’kov, A.N., Nikitov, S.A.: Metamaterials: basic research and potential applications. Herald Russ. Acad. Sci. 78, 268–278 (2008) Gulyaev, Yu.V., Lagar’kov, A.N., Nikitov, S.A.: Metamaterials: basic research and potential applications. Herald Russ. Acad. Sci. 78, 268–278 (2008)
151.
Zurück zum Zitat Vityaz, P.A., Shelekhina, V.M., Prokhorov, O.A., Gaponenko, N.V.: Preparation of pseudocrystalline materials based on silica. Proc. Natl. Acad. Sci. Belarus. Physical-Technical Ser. 1, 16–20 (2002) (in Russian) Vityaz, P.A., Shelekhina, V.M., Prokhorov, O.A., Gaponenko, N.V.: Preparation of pseudocrystalline materials based on silica. Proc. Natl. Acad. Sci. Belarus. Physical-Technical Ser. 1, 16–20 (2002) (in Russian)
152.
Zurück zum Zitat Sidorov, L.N., Yurovskaya, M.A., Borschevskii, A.Y., Trushkov, I.V., Ioffe, I.N.: Fullerenes. Ekzamen, Moscow, 690 p. (2005) (in Russian) Sidorov, L.N., Yurovskaya, M.A., Borschevskii, A.Y., Trushkov, I.V., Ioffe, I.N.: Fullerenes. Ekzamen, Moscow, 690 p. (2005) (in Russian)
153.
Zurück zum Zitat Suzdalev, I.P.: Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. KomKniga, Moscow (2006).((in Russian)) Suzdalev, I.P.: Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. KomKniga, Moscow (2006).((in Russian))
154.
Zurück zum Zitat Morozov, A.N., Skripkin, A.V.: Behaviour of polymer chains and structures under the influence of random forces. Nonlinear World. 13(7), 33–37 (2015) ((in Russian)) Morozov, A.N., Skripkin, A.V.: Behaviour of polymer chains and structures under the influence of random forces. Nonlinear World. 13(7), 33–37 (2015) ((in Russian))
155.
Zurück zum Zitat Blank, V.D., Levin, V.M., Prokhorov, V.M., Buga, S.G., Dubitskii, G.A., Serebryanaya, N.R.: Elastic properties of ultrahard fullerites. J. Exp. Theoret. Phys. 87, 741–746 (1998) Blank, V.D., Levin, V.M., Prokhorov, V.M., Buga, S.G., Dubitskii, G.A., Serebryanaya, N.R.: Elastic properties of ultrahard fullerites. J. Exp. Theoret. Phys. 87, 741–746 (1998)
156.
Zurück zum Zitat Kulbachinskii, V.A., Buga, S.G., Blank, V.D., Dubitsky, G.A., Serebryanaya, N.R.: Superconducting superhard composites based on C60, diamond or boron nitride and MgB2. J. Nanostruct. Polym. Nanocompos. 6(4), 119–122 (2010) Kulbachinskii, V.A., Buga, S.G., Blank, V.D., Dubitsky, G.A., Serebryanaya, N.R.: Superconducting superhard composites based on C60, diamond or boron nitride and MgB2. J. Nanostruct. Polym. Nanocompos. 6(4), 119–122 (2010)
157.
Zurück zum Zitat Kobelev, N.P., Soifer, Ya.M., Bashkin, I.O., Moravski, A.P.: Elastic and dissipative properties of C60 fullerite. Nanostruct. Mater. 6(5), 909–912 (1995) Kobelev, N.P., Soifer, Ya.M., Bashkin, I.O., Moravski, A.P.: Elastic and dissipative properties of C60 fullerite. Nanostruct. Mater. 6(5), 909–912 (1995)
158.
Zurück zum Zitat Yildirim, T., Harris, A.B.: Lattice dynamics of solids C60. Phys. Rev. B 46, 7878–7896 (1992) Yildirim, T., Harris, A.B.: Lattice dynamics of solids C60. Phys. Rev. B 46, 7878–7896 (1992)
159.
Zurück zum Zitat Mikhalchenko, V.P., Motskin, V.V.: On elastic properties of fullerite C60 f.c.c. phase. J. Thermoelectricity 3, 31–44 (2004) Mikhalchenko, V.P., Motskin, V.V.: On elastic properties of fullerite C60 f.c.c. phase. J. Thermoelectricity 3, 31–44 (2004)
160.
Zurück zum Zitat Koch, E.: Enhancing TC in field-doped fullerenes by applying uniaxial stress. Phys. Rev. B. 66, 081401 (2002) Koch, E.: Enhancing TC in field-doped fullerenes by applying uniaxial stress. Phys. Rev. B. 66, 081401 (2002)
161.
Zurück zum Zitat Kobelev, N.P., Nikolaev, R.K., Soifer, Ya.M., Khasanov, S.S.: Elastic moduli of single-crystal C60. Phys. Solid State 40(1), 154–156 (1998) Kobelev, N.P., Nikolaev, R.K., Soifer, Ya.M., Khasanov, S.S.: Elastic moduli of single-crystal C60. Phys. Solid State 40(1), 154–156 (1998)
162.
Zurück zum Zitat Ostrovsky, L.A., Potapov, A.I.: Modulated Waves: Theory and Applications. The Johns Hopkins University Press, Baltimore, MD (1999) Ostrovsky, L.A., Potapov, A.I.: Modulated Waves: Theory and Applications. The Johns Hopkins University Press, Baltimore, MD (1999)
163.
Zurück zum Zitat Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990).((in Russian)) Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990).((in Russian))
165.
Zurück zum Zitat Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics, p. 459. Blackie Academic and Professional, London (1995) Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics, p. 459. Blackie Academic and Professional, London (1995)
166.
Zurück zum Zitat Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994) Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994)
167.
Zurück zum Zitat Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME. J. Appl. Mech. 48(2), 339–344 (1981) Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME. J. Appl. Mech. 48(2), 339–344 (1981)
168.
Zurück zum Zitat Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p. (2012) Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p. (2012)
169.
Zurück zum Zitat Lippman, H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11) Part 1, 753–762 (1995) Lippman, H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11) Part 1, 753–762 (1995)
170.
Zurück zum Zitat Bobrovnitskii, Yu.I.: An acoustic metamaterial with unusual wave properties. Acoust. Phys. 60(4), 371–378 (2014) Bobrovnitskii, Yu.I.: An acoustic metamaterial with unusual wave properties. Acoust. Phys. 60(4), 371–378 (2014)
171.
Zurück zum Zitat Bobrovnitskii, Yu.I.: Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoust. Phys. 61(3), 255–264 (2015) Bobrovnitskii, Yu.I.: Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoust. Phys. 61(3), 255–264 (2015)
172.
Zurück zum Zitat Bobrovnitskii, Yu.I., Tomilina, T.M.: Sound absorption and metamaterials: a review. Acoust. Phys. 64(5), 519–526 (2018) Bobrovnitskii, Yu.I., Tomilina, T.M.: Sound absorption and metamaterials: a review. Acoust. Phys. 64(5), 519–526 (2018)
173.
Zurück zum Zitat Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016) Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016)
174.
Zurück zum Zitat Fedotovskii, V.S.: A porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoust. Phys. 64(5), 548–554 (2018) Fedotovskii, V.S.: A porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoust. Phys. 64(5), 548–554 (2018)
175.
Zurück zum Zitat Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017) Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017)
176.
Zurück zum Zitat Zhu, S., Zhang, X.: Metamaterials: artificial materials beyond nature. Natl. Sci. Rev. 5(2), 131 (2018) Zhu, S., Zhang, X.: Metamaterials: artificial materials beyond nature. Natl. Sci. Rev. 5(2), 131 (2018)
177.
Zurück zum Zitat Solyaev, Yu., Lurie, S., Ustenko, A.: Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mech. Thermodyn. 31, 1099–1107 (2019) Solyaev, Yu., Lurie, S., Ustenko, A.: Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mech. Thermodyn. 31, 1099–1107 (2019)
178.
Zurück zum Zitat Altenbach, H., Maugin, G.A., Erofeev, V.I. (eds.): Mechanics of Generalized Continua. Springer, Berlin, Heidelberg, 350 p. (2011) Altenbach, H., Maugin, G.A., Erofeev, V.I. (eds.): Mechanics of Generalized Continua. Springer, Berlin, Heidelberg, 350 p. (2011)
179.
Zurück zum Zitat Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua. One Hundred Years After the Cosserats. Springer, 337 p. (2010) Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua. One Hundred Years After the Cosserats. Springer, 337 p. (2010)
180.
Zurück zum Zitat Vakhnenko, V.A.: Diagnosis of the properties of a structurized medium by long nonlinear waves. J. Appl. Mech. Tech. Phys. 37(5), 643–649 (1996) Vakhnenko, V.A.: Diagnosis of the properties of a structurized medium by long nonlinear waves. J. Appl. Mech. Tech. Phys. 37(5), 643–649 (1996)
181.
Zurück zum Zitat Destrade, M., Gilchrist, M.D., Saccomandi, G.: Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am. 127(5), 2759–2763 (2010) Destrade, M., Gilchrist, M.D., Saccomandi, G.: Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am. 127(5), 2759–2763 (2010)
182.
Zurück zum Zitat Nikitina, N.E.: Acoustoelasticity. Experience of Practical Application. TALAM, Nizhny Novgorod, 208 p (2005) (in Russian) Nikitina, N.E.: Acoustoelasticity. Experience of Practical Application. TALAM, Nizhny Novgorod, 208 p (2005) (in Russian)
183.
Zurück zum Zitat Erofeev, V.I., Pavlov, I.S.: Rotational waves in microstructured materials. In: dell’Isola, F., Eremeyev, V.A., Porubov, A.V. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials, vol. 87, pp. 103–124. Springer, Cham (2018) Erofeev, V.I., Pavlov, I.S.: Rotational waves in microstructured materials. In: dell’Isola, F., Eremeyev, V.A., Porubov, A.V. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials, vol. 87, pp. 103–124. Springer, Cham (2018)
184.
Zurück zum Zitat Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge (1927) Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge (1927)
185.
Zurück zum Zitat Broberg, K.B.: The cell model of materials. Comput. Mech. 19, 447–452 (1997) Broberg, K.B.: The cell model of materials. Comput. Mech. 19, 447–452 (1997)
186.
Zurück zum Zitat Gendelman, O.V., Manevitch, L.I.: The description of polyethylene crystal as a continuum with internal degrees of freedom. Int. J. Solids Struct. 33(12), 1781–1798 (1996) Gendelman, O.V., Manevitch, L.I.: The description of polyethylene crystal as a continuum with internal degrees of freedom. Int. J. Solids Struct. 33(12), 1781–1798 (1996)
187.
Zurück zum Zitat Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007) Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007)
188.
Zurück zum Zitat Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow (1965); Plenum Press, New York (1968) Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow (1965); Plenum Press, New York (1968)
189.
Zurück zum Zitat Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005) Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005)
190.
Zurück zum Zitat Erofeev, V.I., Malkhanov, A.O., Zemlyanukhin, A.I., Catcon, V.M.: Nonlinear magnetoelastic waves in a plate. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures. Non-classical Theories and Applications. Advanced Structured Materials, vol. 15, pp. 125–134. Springer, Heidelberg, Dordrecht, London, New York (2011) Erofeev, V.I., Malkhanov, A.O., Zemlyanukhin, A.I., Catcon, V.M.: Nonlinear magnetoelastic waves in a plate. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures. Non-classical Theories and Applications. Advanced Structured Materials, vol. 15, pp. 125–134. Springer, Heidelberg, Dordrecht, London, New York (2011)
191.
Zurück zum Zitat Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Amsterdam (1988) Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Amsterdam (1988)
192.
Metadaten
Titel
Theoretical Basis of the Structural Modeling Method
verfasst von
Vladimir I. Erofeev
Igor S. Pavlov
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-60330-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.