Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2020

27.02.2020 | Review Paper

Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: a review and perspective

verfasst von: Xiazi Xiao, Dmitry Terentyev, Haijian Chu, Huiling Duan

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study of irradiation hardening and embrittlement is critically important for the development of next-generation structural materials tolerant to neutron irradiation, and could dramatically affect the approach to the design of components for advanced nuclear reactors. In addition, a growing interest is observed in the field of research and development of irradiation-resistant materials. This review aims to provide an overview of the theoretical development related to irradiation hardening and embrittlement at moderate irradiation conditions achieved in recent years, which can help extend our fundamental knowledge on nuclear structural materials. After a general introduction to the irradiation effects on metallic materials, recent research progress covering theoretical modelling is summarized for different types of structural materials. The fundamental mechanisms are elucidated within a wide range of temporal and spatial scales. This review closes with the current understanding of irradiation hardening and embrittlement, and puts some perspectives deserving further study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zinkle, S.J., Snead, L.L.: Designing radiation resistance in materials for fusion energy. In: Clarke, D.R. (ed.) Annual Review of Materials Research, pp. 241–267. Annual Reviews, Palo Alto (2014) Zinkle, S.J., Snead, L.L.: Designing radiation resistance in materials for fusion energy. In: Clarke, D.R. (ed.) Annual Review of Materials Research, pp. 241–267. Annual Reviews, Palo Alto (2014)
2.
Zurück zum Zitat Shimada, M., Campbell, D.J., Mukhovatov, V., et al.: Progress in the ITER physics basis. Chapter 1: overview and summary. Nucl. Fusion 47, S1–S17 (2007) Shimada, M., Campbell, D.J., Mukhovatov, V., et al.: Progress in the ITER physics basis. Chapter 1: overview and summary. Nucl. Fusion 47, S1–S17 (2007)
3.
Zurück zum Zitat Zinkle, S.J.: Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005) Zinkle, S.J.: Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005)
4.
Zurück zum Zitat Li, M., Eldrup, M., Byun, T.S., et al.: Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum. J. Nucl. Mater. 376, 11–28 (2008) Li, M., Eldrup, M., Byun, T.S., et al.: Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum. J. Nucl. Mater. 376, 11–28 (2008)
5.
Zurück zum Zitat Garner, F.A., Toloczko, M.B., Sencer, B.H.: Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276, 123–142 (2000) Garner, F.A., Toloczko, M.B., Sencer, B.H.: Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276, 123–142 (2000)
6.
Zurück zum Zitat Garner, F.A., Toloczko, M.B.: Irradiation creep and void swelling of austenitic stainless steels at low displacement rates in light water energy systems. J. Nucl. Mater. 251, 252–261 (1997) Garner, F.A., Toloczko, M.B.: Irradiation creep and void swelling of austenitic stainless steels at low displacement rates in light water energy systems. J. Nucl. Mater. 251, 252–261 (1997)
7.
Zurück zum Zitat Yamashita, S., Yano, Y., Tachi, Y., et al.: Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels. J. Nucl. Mater. 386, 135–139 (2009) Yamashita, S., Yano, Y., Tachi, Y., et al.: Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels. J. Nucl. Mater. 386, 135–139 (2009)
8.
Zurück zum Zitat Terentyev, D.A., Malerba, L., Chakarova, et al.: Displacement cascades in FE-CR: a molecular dynamics study. J. Nucl. Mater. 349, 119–132 (2006) Terentyev, D.A., Malerba, L., Chakarova, et al.: Displacement cascades in FE-CR: a molecular dynamics study. J. Nucl. Mater. 349, 119–132 (2006)
9.
Zurück zum Zitat Terentyev, D.A., Malerba, L., Hou, M.: Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B 75, 104108 (2007) Terentyev, D.A., Malerba, L., Hou, M.: Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B 75, 104108 (2007)
10.
Zurück zum Zitat Nordlun, K., Zinkle, S.J., Sand, A.E., et al.: Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512, 450–479 (2018) Nordlun, K., Zinkle, S.J., Sand, A.E., et al.: Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512, 450–479 (2018)
11.
Zurück zum Zitat Terentyev, D., Bacon, D.J., Osetsky, Y.N.: Interaction of an edge dislocation with voids in alpha-iron modelled with different interatomic potentials. J. Phys. Condens. Mat. 20, 445007 (2008) Terentyev, D., Bacon, D.J., Osetsky, Y.N.: Interaction of an edge dislocation with voids in alpha-iron modelled with different interatomic potentials. J. Phys. Condens. Mat. 20, 445007 (2008)
12.
Zurück zum Zitat Becquart, C.S., Domain, C.: Modeling microstructure and irradiation effects. Metall. Mater. Tans. A 42A, 852–870 (2011) Becquart, C.S., Domain, C.: Modeling microstructure and irradiation effects. Metall. Mater. Tans. A 42A, 852–870 (2011)
13.
Zurück zum Zitat Singh, B.N., Leffers, T., Horsewell, A.: Dislocation and void segregation in copper during neutron irradiation. Pholos. Mag. 53, 233–242 (1986) Singh, B.N., Leffers, T., Horsewell, A.: Dislocation and void segregation in copper during neutron irradiation. Pholos. Mag. 53, 233–242 (1986)
14.
Zurück zum Zitat Brimbal, D., Decamps, B., Barbu, A., et al.: Dual-beam irradiation of alpha-iron: heterogeneous bubble formation on dislocation loops. J. Nucl. Mater. 418, 313–315 (2011) Brimbal, D., Decamps, B., Barbu, A., et al.: Dual-beam irradiation of alpha-iron: heterogeneous bubble formation on dislocation loops. J. Nucl. Mater. 418, 313–315 (2011)
15.
Zurück zum Zitat Kuksenko, V., Pareige, C., Pareige, P.: Cr precipitation in neutron irradiated industrial purity Fe–Cr model alloys. J. Nucl. Mater. 432, 160–165 (2013) Kuksenko, V., Pareige, C., Pareige, P.: Cr precipitation in neutron irradiated industrial purity Fe–Cr model alloys. J. Nucl. Mater. 432, 160–165 (2013)
16.
Zurück zum Zitat Briceno, M., Kacher, J., Robertson, I.M.: Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature. J. Nucl. Mater. 433, 390–396 (2013) Briceno, M., Kacher, J., Robertson, I.M.: Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature. J. Nucl. Mater. 433, 390–396 (2013)
17.
Zurück zum Zitat Yang, S., Yang, Z., Wang, H., et al.: Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel. J. Nucl. Mater. 488, 215–221 (2017) Yang, S., Yang, Z., Wang, H., et al.: Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel. J. Nucl. Mater. 488, 215–221 (2017)
18.
Zurück zum Zitat Was, G.S., Bruemmer, S.M.: Effects of irraidation on intergranular stress corrosion cracking. J. Nucl. Mater. 216, 326–347 (1994) Was, G.S., Bruemmer, S.M.: Effects of irraidation on intergranular stress corrosion cracking. J. Nucl. Mater. 216, 326–347 (1994)
19.
Zurück zum Zitat Chopra, O.K., Rao, A.S.: A review of irradiation effects on LWR core internal materials—IASCC susceptibility and crack growth rates of austenitic stainless steels. J. Nucl. Mater. 409, 235–256 (2011) Chopra, O.K., Rao, A.S.: A review of irradiation effects on LWR core internal materials—IASCC susceptibility and crack growth rates of austenitic stainless steels. J. Nucl. Mater. 409, 235–256 (2011)
20.
Zurück zum Zitat Knaster, J., Moeslang, A., Muroga, T.: Materials research for fusion. Nat. Phys. 12, 424–434 (2016) Knaster, J., Moeslang, A., Muroga, T.: Materials research for fusion. Nat. Phys. 12, 424–434 (2016)
21.
Zurück zum Zitat Acosta, B., Sevini, F.: Evaluation of irradiation damage effect by applying electric properties based techniques. Nucl. Eng. Des. 229, 165–173 (2004) Acosta, B., Sevini, F.: Evaluation of irradiation damage effect by applying electric properties based techniques. Nucl. Eng. Des. 229, 165–173 (2004)
22.
Zurück zum Zitat Song, C.: Irradiation effects on Zr-2.5Nb in power reactors. CNL Nucl. Rev. 5, 17–36 (2016) Song, C.: Irradiation effects on Zr-2.5Nb in power reactors. CNL Nucl. Rev. 5, 17–36 (2016)
23.
Zurück zum Zitat Azevedo, C.R.F.: A review on neutron-irradiation-induced hardening of metallic components. Eng. Fail. Anal. 18, 1921–1942 (2011) Azevedo, C.R.F.: A review on neutron-irradiation-induced hardening of metallic components. Eng. Fail. Anal. 18, 1921–1942 (2011)
24.
Zurück zum Zitat Byun, T.S., Farrell, K., Li, M.: Deformation in metals after low-temperature irradiation: part I—mapping macroscopic deformation modes on true stress-dose plane. Acta Mater. 56, 1044–1055 (2008) Byun, T.S., Farrell, K., Li, M.: Deformation in metals after low-temperature irradiation: part I—mapping macroscopic deformation modes on true stress-dose plane. Acta Mater. 56, 1044–1055 (2008)
25.
Zurück zum Zitat Byun, T.S., Farrell, K., Li, M.: Deformation in metals after low-temperature irradiation: part II—irradiation hardening, strain hardening, and stress ratios. Acta Mater. 56, 1056–1064 (2008) Byun, T.S., Farrell, K., Li, M.: Deformation in metals after low-temperature irradiation: part II—irradiation hardening, strain hardening, and stress ratios. Acta Mater. 56, 1056–1064 (2008)
26.
Zurück zum Zitat Kuksenko, V., Pareige, C., Genevois, C., et al.: Effect of neutron-irradiation on the microstructure of a Fe-12at.%Cr alloy. J. Nucl. Mater. 415, 61–66 (2011) Kuksenko, V., Pareige, C., Genevois, C., et al.: Effect of neutron-irradiation on the microstructure of a Fe-12at.%Cr alloy. J. Nucl. Mater. 415, 61–66 (2011)
27.
Zurück zum Zitat Pokor, C., Brechet, Y., Dubuisson, P., et al.: Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: evolution of the microstructure. J. Nucl. Mater. 326, 19–29 (2004) Pokor, C., Brechet, Y., Dubuisson, P., et al.: Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: evolution of the microstructure. J. Nucl. Mater. 326, 19–29 (2004)
28.
Zurück zum Zitat Yan, C., Wang, R., Wang, Y., et al.: Effects of ion irradiation on microstructure and properties of zirconium alloys—a review. Nucl. Eng. Technol. 47, 323–331 (2015) Yan, C., Wang, R., Wang, Y., et al.: Effects of ion irradiation on microstructure and properties of zirconium alloys—a review. Nucl. Eng. Technol. 47, 323–331 (2015)
29.
Zurück zum Zitat Chen, Y.: Irradiation effects of ht-9 martensitic steel. Nucl. Eng. Technol. 45, 311–322 (2013) Chen, Y.: Irradiation effects of ht-9 martensitic steel. Nucl. Eng. Technol. 45, 311–322 (2013)
30.
Zurück zum Zitat Scott, P.: A review of irradiation assisted stress corrosion cracking. J. Nucl. Mater. 211, 101–122 (1994) Scott, P.: A review of irradiation assisted stress corrosion cracking. J. Nucl. Mater. 211, 101–122 (1994)
31.
Zurück zum Zitat Xu, S., Zheng, W., Yang, L.: A review of irradiation effects on mechnical properties of candidate SCWR fuel cladding alloys for design considerations. CNL Nucl. Rev. 5, 309–331 (2016) Xu, S., Zheng, W., Yang, L.: A review of irradiation effects on mechnical properties of candidate SCWR fuel cladding alloys for design considerations. CNL Nucl. Rev. 5, 309–331 (2016)
32.
Zurück zum Zitat Kurtz, R.J., Alamo, A., Lucon, E., et al.: Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. J. Nucl. Mater. 386–88, 411–417 (2009) Kurtz, R.J., Alamo, A., Lucon, E., et al.: Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. J. Nucl. Mater. 386–88, 411–417 (2009)
33.
Zurück zum Zitat Shin, C., Jin, H.-H., Kim, M.-W.: Evaluation of the depth-dependent yield strength of a nanoindented ion-irradiated Fe–Cr model alloy by using a finite element modeling. J. Nucl. Mater. 392, 476–481 (2009) Shin, C., Jin, H.-H., Kim, M.-W.: Evaluation of the depth-dependent yield strength of a nanoindented ion-irradiated Fe–Cr model alloy by using a finite element modeling. J. Nucl. Mater. 392, 476–481 (2009)
34.
Zurück zum Zitat Yu, L., Xiao, X., Chen, L., et al.: A micromechanical model for nano-metallic-multilayers with helium irradiation. Int. J. Solids Struct. 102, 267–274 (2016) Yu, L., Xiao, X., Chen, L., et al.: A micromechanical model for nano-metallic-multilayers with helium irradiation. Int. J. Solids Struct. 102, 267–274 (2016)
35.
Zurück zum Zitat Dunn, A., Dingreville, R., Capolungo, L.: Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated alpha-Fe. Modell. Simul. Mater. Sci. Eng. 24, 015005 (2016) Dunn, A., Dingreville, R., Capolungo, L.: Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated alpha-Fe. Modell. Simul. Mater. Sci. Eng. 24, 015005 (2016)
36.
Zurück zum Zitat Chakraborty, P., Biner, S.B.: Crystal plasticity modeling of irradiation effects on flow stress in pure-iron and iron–copper alloys. Mech. Mater. 101, 71–80 (2016) Chakraborty, P., Biner, S.B.: Crystal plasticity modeling of irradiation effects on flow stress in pure-iron and iron–copper alloys. Mech. Mater. 101, 71–80 (2016)
37.
Zurück zum Zitat Erinosho, T.O., Dunne, F.P.E.: Strain localization and failure in irradiated zircaloy with crystal plasticity. Int. J. Plast. 71, 170–194 (2015) Erinosho, T.O., Dunne, F.P.E.: Strain localization and failure in irradiated zircaloy with crystal plasticity. Int. J. Plast. 71, 170–194 (2015)
38.
Zurück zum Zitat Bergner, F., Pareige, C., Hernandez-Mayoral, M., et al.: Application of a three-feature dispersed-barrier hardening model to neutronirradiated Fe–Cr model alloys. J. Nucl. Mater. 448, 96–102 (2014) Bergner, F., Pareige, C., Hernandez-Mayoral, M., et al.: Application of a three-feature dispersed-barrier hardening model to neutronirradiated Fe–Cr model alloys. J. Nucl. Mater. 448, 96–102 (2014)
39.
Zurück zum Zitat Orowan, E.: A type of plastic deformation new in metals. Nature 149, 643–644 (1942) Orowan, E.: A type of plastic deformation new in metals. Nature 149, 643–644 (1942)
40.
Zurück zum Zitat Singh, B.N., Foreman, A.J.E., Trinkaus, H.: Radiation hardening revisited: role of intracascade clustering. J. Nucl. Mater. 249, 103–115 (1997) Singh, B.N., Foreman, A.J.E., Trinkaus, H.: Radiation hardening revisited: role of intracascade clustering. J. Nucl. Mater. 249, 103–115 (1997)
41.
Zurück zum Zitat Friedel, J.: On the linear work hardening mate of face-centered cubic single crystals. Philos. Mag. 46, 1169–1186 (1955) Friedel, J.: On the linear work hardening mate of face-centered cubic single crystals. Philos. Mag. 46, 1169–1186 (1955)
42.
Zurück zum Zitat Kroupa, F., Hirsch, P.B.: Elastic interaction between prismatic dislocation loops and straight dislocations. Discuss. Faraday Soc. 38, 49–55 (1964) Kroupa, F., Hirsch, P.B.: Elastic interaction between prismatic dislocation loops and straight dislocations. Discuss. Faraday Soc. 38, 49–55 (1964)
43.
Zurück zum Zitat Bacon, D.J., Kocks, U.F., Scattergood, R.O.: The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 28, 1241–1263 (1973) Bacon, D.J., Kocks, U.F., Scattergood, R.O.: The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 28, 1241–1263 (1973)
44.
Zurück zum Zitat Kasada, R., Takayama, Y., Yabuuchi, K., et al.: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 86, 2658–2661 (2011) Kasada, R., Takayama, Y., Yabuuchi, K., et al.: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 86, 2658–2661 (2011)
45.
Zurück zum Zitat Liu, P.P., Wan, F.R., Zhan, Q.: A model to evaluate the nano-indentation hardness of ion-irradiated materials. Nucl. Instrum. Methods B 342, 13–18 (2015) Liu, P.P., Wan, F.R., Zhan, Q.: A model to evaluate the nano-indentation hardness of ion-irradiated materials. Nucl. Instrum. Methods B 342, 13–18 (2015)
46.
Zurück zum Zitat Oka, H., Sato, Y., Hashimoto, N., et al.: Evaluation of multi-layered hardness in ion-irradiated stainless steel by nano-indentation technique. J. Nucl. Mater. 462, 470–474 (2015) Oka, H., Sato, Y., Hashimoto, N., et al.: Evaluation of multi-layered hardness in ion-irradiated stainless steel by nano-indentation technique. J. Nucl. Mater. 462, 470–474 (2015)
47.
Zurück zum Zitat Takayama, Y., Kasada, R., Yabuuchi, K., et al.: Evaluation of irradiation hardening of Fe-ion irradiated F82H by nano-indentation techniques. In: Nie, J.F. and Morton, A. (eds.) Pricm 7, pts 1–3. p. 2915 (2010) Takayama, Y., Kasada, R., Yabuuchi, K., et al.: Evaluation of irradiation hardening of Fe-ion irradiated F82H by nano-indentation techniques. In: Nie, J.F. and Morton, A. (eds.) Pricm 7, pts 1–3. p. 2915 (2010)
48.
Zurück zum Zitat Yabuuchi, K., Kuribayashi, Y., Nogami, S., et al.: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation. J. Nucl. Mater. 446, 142–147 (2014) Yabuuchi, K., Kuribayashi, Y., Nogami, S., et al.: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation. J. Nucl. Mater. 446, 142–147 (2014)
49.
Zurück zum Zitat Xiao, X., Yu, L.: A hardening model for the cross-sectional nanoindentation of ion-irradiated materials. J. Nucl. Mater. 511, 220–230 (2018) Xiao, X., Yu, L.: A hardening model for the cross-sectional nanoindentation of ion-irradiated materials. J. Nucl. Mater. 511, 220–230 (2018)
50.
Zurück zum Zitat Xiao, X., Chen, Q., Yang, H., et al.: A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 485, 80–89 (2017) Xiao, X., Chen, Q., Yang, H., et al.: A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 485, 80–89 (2017)
51.
Zurück zum Zitat Xiao, X., Yu, L.: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials. J. Nucl. Mater. 503, 110–115 (2018) Xiao, X., Yu, L.: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials. J. Nucl. Mater. 503, 110–115 (2018)
52.
Zurück zum Zitat Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005) Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005)
53.
Zurück zum Zitat Huang, H.F., Li, D.H., Li, J.J., et al.: Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under Xenon ion irradiation. Mater. Trans. 55, 1243–1247 (2014) Huang, H.F., Li, D.H., Li, J.J., et al.: Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under Xenon ion irradiation. Mater. Trans. 55, 1243–1247 (2014)
54.
Zurück zum Zitat Liu, X., Wang, R., Jiang, J., et al.: Slow positron beam and nanoindentation study of irradiation-related defects in reactor vessel steels. J. Nucl. Mater. 451, 249–254 (2014) Liu, X., Wang, R., Jiang, J., et al.: Slow positron beam and nanoindentation study of irradiation-related defects in reactor vessel steels. J. Nucl. Mater. 451, 249–254 (2014)
55.
Zurück zum Zitat Liu, X., Wang, R., Ren, A., et al.: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation. J. Nucl. Mater. 444, 1–6 (2014) Liu, X., Wang, R., Ren, A., et al.: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation. J. Nucl. Mater. 444, 1–6 (2014)
56.
Zurück zum Zitat Li, S., Wang, Y., Dai, X., et al.: Evaluation of hardening behaviors in ion-irradiated Fe-9Cr and Fe-20Cr alloys by nanoindentation technique. J. Nucl. Mater. 478, 50–55 (2016) Li, S., Wang, Y., Dai, X., et al.: Evaluation of hardening behaviors in ion-irradiated Fe-9Cr and Fe-20Cr alloys by nanoindentation technique. J. Nucl. Mater. 478, 50–55 (2016)
57.
Zurück zum Zitat Xiao, X., Terentyev, D., Yu, L., Bakaev, A., et al.: Investigation of the thermo-mechanical behavior of neutron-irradiated Fe–Cr alloys by self consistent plasticity theory. J. Nucl. Mater. 477, 123–133 (2016) Xiao, X., Terentyev, D., Yu, L., Bakaev, A., et al.: Investigation of the thermo-mechanical behavior of neutron-irradiated Fe–Cr alloys by self consistent plasticity theory. J. Nucl. Mater. 477, 123–133 (2016)
58.
Zurück zum Zitat Hiratani, M., Bulatov, V.V.: Solid-solution hardening by point-like obstacles of different kinds. Philos. Mag. Lett. 84, 461–470 (2004) Hiratani, M., Bulatov, V.V.: Solid-solution hardening by point-like obstacles of different kinds. Philos. Mag. Lett. 84, 461–470 (2004)
59.
Zurück zum Zitat Arsenlis, A., Wirth, B.D., Rhee, M.: Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84, 3617–3635 (2004) Arsenlis, A., Wirth, B.D., Rhee, M.: Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84, 3617–3635 (2004)
60.
Zurück zum Zitat De Rahul, S.: Multiscale modeling of irradiated polycrystalline fcc metals. Int. J. Solids Struct. 51, 3919–3930 (2014) De Rahul, S.: Multiscale modeling of irradiated polycrystalline fcc metals. Int. J. Solids Struct. 51, 3919–3930 (2014)
61.
Zurück zum Zitat Xiao, X., Song, D., Chu, H., et al.: Mechanical behaviors of irradiated fcc polycrystals with nanotwins. Int. J. Plast. 74, 110–126 (2015) Xiao, X., Song, D., Chu, H., et al.: Mechanical behaviors of irradiated fcc polycrystals with nanotwins. Int. J. Plast. 74, 110–126 (2015)
62.
Zurück zum Zitat Xiao, X.Z., Song, D.K., Xue, J.M., et al.: A size-dependent tensorial plasticity model for fcc single crystal with irradiation. Int. J. Plast. 65, 152–167 (2015) Xiao, X.Z., Song, D.K., Xue, J.M., et al.: A size-dependent tensorial plasticity model for fcc single crystal with irradiation. Int. J. Plast. 65, 152–167 (2015)
63.
Zurück zum Zitat Xiao, X.Z., Song, D.K., Chu, H.J., et al.: Mechanical properties for irradiated face-centred cubic nanocrystalline metals. Proc. R. Soc. A Math. Phy. 471, 20140832 (2015)MathSciNetMATH Xiao, X.Z., Song, D.K., Chu, H.J., et al.: Mechanical properties for irradiated face-centred cubic nanocrystalline metals. Proc. R. Soc. A Math. Phy. 471, 20140832 (2015)MathSciNetMATH
64.
Zurück zum Zitat Xiao, X., Song, D., Xue, J., et al.: A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated fcc metallic polycrystals. J. Mech. Phys. Solids 78, 1–16 (2015)MathSciNet Xiao, X., Song, D., Xue, J., et al.: A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated fcc metallic polycrystals. J. Mech. Phys. Solids 78, 1–16 (2015)MathSciNet
65.
Zurück zum Zitat Li, D., Zbib, H., Sun, X., et al.: Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics. Int. J. Plast. 52, 3–17 (2014) Li, D., Zbib, H., Sun, X., et al.: Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics. Int. J. Plast. 52, 3–17 (2014)
66.
Zurück zum Zitat Patra, A., McDowell, D.L.: Continuum modeling of localized deformation in irradiated bcc materials. J. Nucl. Mater. 432, 414–427 (2013) Patra, A., McDowell, D.L.: Continuum modeling of localized deformation in irradiated bcc materials. J. Nucl. Mater. 432, 414–427 (2013)
67.
Zurück zum Zitat Patra, A., McDowell, D.L.: A void nucleation and growth based damage framework to model failure initiation ahead of a sharp notch in irradiated bcc materials. J. Mech. Phys. Solids 74, 111–135 (2015)MathSciNet Patra, A., McDowell, D.L.: A void nucleation and growth based damage framework to model failure initiation ahead of a sharp notch in irradiated bcc materials. J. Mech. Phys. Solids 74, 111–135 (2015)MathSciNet
68.
Zurück zum Zitat Patra, A., McDowell, D.L.: Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater. 110, 364–376 (2016) Patra, A., McDowell, D.L.: Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater. 110, 364–376 (2016)
69.
Zurück zum Zitat Barton, N.R., Arsenlis, A., Marian, J.: A polycrystal plasticity model of strain localization in irradiated iron. J. Mech. Phys. Solids 61, 341–351 (2013) Barton, N.R., Arsenlis, A., Marian, J.: A polycrystal plasticity model of strain localization in irradiated iron. J. Mech. Phys. Solids 61, 341–351 (2013)
70.
Zurück zum Zitat Patra, A., McDowell, D.L.: Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos. Mag. 92, 861–887 (2012) Patra, A., McDowell, D.L.: Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos. Mag. 92, 861–887 (2012)
71.
Zurück zum Zitat Onimus, F., Bechade, J.-L.: A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys. J. Nucl. Mater. 384, 163–174 (2009) Onimus, F., Bechade, J.-L.: A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys. J. Nucl. Mater. 384, 163–174 (2009)
72.
Zurück zum Zitat Krishna, S., De, S.: A temperature and rate-dependent micromechanical model of molybdenum under neutron irradiation. Mech. Mater. 43, 99–110 (2011) Krishna, S., De, S.: A temperature and rate-dependent micromechanical model of molybdenum under neutron irradiation. Mech. Mater. 43, 99–110 (2011)
73.
Zurück zum Zitat Arsenlis, A., Rhee, M., Hommes, G., et al.: A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Mater. 60, 3748–3757 (2012) Arsenlis, A., Rhee, M., Hommes, G., et al.: A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Mater. 60, 3748–3757 (2012)
74.
Zurück zum Zitat Saleh, M., Zaidi, Z., Ionescu, M., et al.: Relationship between damage and hardness profiles in ion irradiated ss316 using nanoindentation-experiments and modelling. Int. J. Plast. 86, 151–169 (2016) Saleh, M., Zaidi, Z., Ionescu, M., et al.: Relationship between damage and hardness profiles in ion irradiated ss316 using nanoindentation-experiments and modelling. Int. J. Plast. 86, 151–169 (2016)
75.
Zurück zum Zitat Saleh, M., Xu, A., Hurt, C., et al.: Oblique cross-section nanoindentation for determining the hardness change in ion-irradiated steel. Int. J. Plast. 112, 242–256 (2019) Saleh, M., Xu, A., Hurt, C., et al.: Oblique cross-section nanoindentation for determining the hardness change in ion-irradiated steel. Int. J. Plast. 112, 242–256 (2019)
76.
Zurück zum Zitat Deo, C., Tom, C., Lebensohn, R., et al.: Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors. J. Nucl. Mater. 377, 136–140 (2008) Deo, C., Tom, C., Lebensohn, R., et al.: Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors. J. Nucl. Mater. 377, 136–140 (2008)
77.
Zurück zum Zitat Li, D., Zbib, H., Garmestani, H., et al.: Modeling of irradiation hardening of polycrystalline materials. Comp. Mater. Sci. 50, 2496–2501 (2011) Li, D., Zbib, H., Garmestani, H., et al.: Modeling of irradiation hardening of polycrystalline materials. Comp. Mater. Sci. 50, 2496–2501 (2011)
78.
Zurück zum Zitat Song, D., Xiao, X., Xue, J., et al.: Mechanical properties of irradiated multi-phase polycrystalline bcc materials. Acta Mech. Sin. 31, 191–204 (2015)MathSciNetMATH Song, D., Xiao, X., Xue, J., et al.: Mechanical properties of irradiated multi-phase polycrystalline bcc materials. Acta Mech. Sin. 31, 191–204 (2015)MathSciNetMATH
79.
Zurück zum Zitat Odette, G.R., Nanstad, R.K.: Predictive reactor pressure vessel steel irradiation embrittlement models: issues and opportunities. JOM 61, 17–23 (2009) Odette, G.R., Nanstad, R.K.: Predictive reactor pressure vessel steel irradiation embrittlement models: issues and opportunities. JOM 61, 17–23 (2009)
80.
Zurück zum Zitat Chen, Z.-A., Wang, L.Y., Chao, Y.-J., et al.: A constraintequivalent approach for assessing fracture toughness of RPV steels under neutron irradiation. Nucl. Eng. Des. 250, 53–59 (2012) Chen, Z.-A., Wang, L.Y., Chao, Y.-J., et al.: A constraintequivalent approach for assessing fracture toughness of RPV steels under neutron irradiation. Nucl. Eng. Des. 250, 53–59 (2012)
81.
Zurück zum Zitat Minkin, A.I., Margolin, B.Z., Smirnov, V.I., et al.: Improvement of a model to predict static fracture toughness of austenitic materials under neutron irradiation. Inorg. Mater. Appl. Res. 5, 617–25 (2014) Minkin, A.I., Margolin, B.Z., Smirnov, V.I., et al.: Improvement of a model to predict static fracture toughness of austenitic materials under neutron irradiation. Inorg. Mater. Appl. Res. 5, 617–25 (2014)
82.
Zurück zum Zitat Lu, Z., Faulkner, R.G., Flewitt, P.E.J.: Irradiation-induced impurity segregation and ductile-to-brittle transition temperature shift in high chromium ferritic/martensitic steels. J. Nucl. Mater. 367, 621–626 (2007) Lu, Z., Faulkner, R.G., Flewitt, P.E.J.: Irradiation-induced impurity segregation and ductile-to-brittle transition temperature shift in high chromium ferritic/martensitic steels. J. Nucl. Mater. 367, 621–626 (2007)
83.
Zurück zum Zitat Chopra, O.K., Rao, A.S.: A review of irradiation effects on LWR core internal materials-neutron embrittlement. J. Nucl. Mater. 412, 195–208 (2011) Chopra, O.K., Rao, A.S.: A review of irradiation effects on LWR core internal materials-neutron embrittlement. J. Nucl. Mater. 412, 195–208 (2011)
84.
Zurück zum Zitat Scibetta, M., Ferreno, D., Gorrochategui, I., et al.: Characterisation of the fracture properties in the ductile to brittle transition region of the weld material of a reactor pressure vessel. J. Nucl. Mater. 411, 25–40 (2011) Scibetta, M., Ferreno, D., Gorrochategui, I., et al.: Characterisation of the fracture properties in the ductile to brittle transition region of the weld material of a reactor pressure vessel. J. Nucl. Mater. 411, 25–40 (2011)
85.
Zurück zum Zitat Wallin, K., Saario, T., Torronen, K.: Statistical model for carbide induced brittle fracture in steel. Metal Sci. 18, 13–16 (1984) Wallin, K., Saario, T., Torronen, K.: Statistical model for carbide induced brittle fracture in steel. Metal Sci. 18, 13–16 (1984)
86.
Zurück zum Zitat Wallin, K.: The scatter in KIC results. Eng. Fract. Mech. 19, 1085–1093 (1984) Wallin, K.: The scatter in KIC results. Eng. Fract. Mech. 19, 1085–1093 (1984)
87.
Zurück zum Zitat Lee, B.-S., Kim, M.-C., Kim, M.-W., et al.: Master curve techniques to evaluate an irradiation embrittlement of nuclear reactor pressure vessels for a long-term operation. Int. J. Press. Vessels Pip. 85, 593–599 (2008) Lee, B.-S., Kim, M.-C., Kim, M.-W., et al.: Master curve techniques to evaluate an irradiation embrittlement of nuclear reactor pressure vessels for a long-term operation. Int. J. Press. Vessels Pip. 85, 593–599 (2008)
88.
Zurück zum Zitat Kotrechko, S., Meshkov, Y.: A new approach to estimate irradiation embrittlement of pressure vessel steels. Int. J. Press. Vessels Pip. 85, 336–343 (2008) Kotrechko, S., Meshkov, Y.: A new approach to estimate irradiation embrittlement of pressure vessel steels. Int. J. Press. Vessels Pip. 85, 336–343 (2008)
89.
Zurück zum Zitat Moskovic, R., Jordinson, C., Stephens, D.A., et al.: A bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal. Metall. Mater. Trans. A 31, 445–459 (2000) Moskovic, R., Jordinson, C., Stephens, D.A., et al.: A bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal. Metall. Mater. Trans. A 31, 445–459 (2000)
90.
Zurück zum Zitat Lin, Y., Yang, W., Tong, Z.F., et al.: Charpy impact test on A508-3 steel after neutron irradiation. Eng. Fail. Anal. A 82, 733–740 (2017) Lin, Y., Yang, W., Tong, Z.F., et al.: Charpy impact test on A508-3 steel after neutron irradiation. Eng. Fail. Anal. A 82, 733–740 (2017)
91.
Zurück zum Zitat Konstantinovic, M.J.: Probabilistic fracture mechanics of irradiation assisted stress corrosion cracking in stainless steels. In: 21st European conference on fracture, vol. 2, pp. 3792–3798 (2016) Konstantinovic, M.J.: Probabilistic fracture mechanics of irradiation assisted stress corrosion cracking in stainless steels. In: 21st European conference on fracture, vol. 2, pp. 3792–3798 (2016)
92.
Zurück zum Zitat Murakami, S., Miyazaki, A., Mizuno, M.: Modeling of irradiation embrittlement of reactor pressure vessel steels. J. Eng. Matter. Technol. ASME 122, 60–66 (2000) Murakami, S., Miyazaki, A., Mizuno, M.: Modeling of irradiation embrittlement of reactor pressure vessel steels. J. Eng. Matter. Technol. ASME 122, 60–66 (2000)
93.
Zurück zum Zitat Margolin, B., Sorokin, A., Smirnov, V., et al.: Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels. J. Nucl. Mater. 452, 595–606 (2014) Margolin, B., Sorokin, A., Smirnov, V., et al.: Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels. J. Nucl. Mater. 452, 595–606 (2014)
94.
Zurück zum Zitat Margolin, B., Sorokin, A.: Physical and mechanical modeling of the neutron irradiation effect on ductile fracture. Part 2. Prediction of swelling effect on drastic decrease in strength. J. Nucl. Mater. 452, 607–613 (2014) Margolin, B., Sorokin, A.: Physical and mechanical modeling of the neutron irradiation effect on ductile fracture. Part 2. Prediction of swelling effect on drastic decrease in strength. J. Nucl. Mater. 452, 607–613 (2014)
95.
Zurück zum Zitat Kayano, H., Kimura, A., Narui, M., et al.: Irradiation embrittlement of neutron-irradiation low activation ferritic steels. J. Nucl. Mater. 155, 978–981 (1988) Kayano, H., Kimura, A., Narui, M., et al.: Irradiation embrittlement of neutron-irradiation low activation ferritic steels. J. Nucl. Mater. 155, 978–981 (1988)
96.
Zurück zum Zitat Harries, D.R.: Neutron irradiation-induced embrittlement in type 316 and other austenitic steels and alloys. J. Nucl. Mater. 82, 2–21 (1979) Harries, D.R.: Neutron irradiation-induced embrittlement in type 316 and other austenitic steels and alloys. J. Nucl. Mater. 82, 2–21 (1979)
97.
Zurück zum Zitat Porter, D.L., Garner, F.A.: Irradiation creep and embrittlement behavior of AISI 316 stainless steel at very high neutron fluences. J. Nucl. Mater. 159, 114–121 (1988) Porter, D.L., Garner, F.A.: Irradiation creep and embrittlement behavior of AISI 316 stainless steel at very high neutron fluences. J. Nucl. Mater. 159, 114–121 (1988)
Metadaten
Titel
Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: a review and perspective
verfasst von
Xiazi Xiao
Dmitry Terentyev
Haijian Chu
Huiling Duan
Publikationsdatum
27.02.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00931-w

Weitere Artikel der Ausgabe 2/2020

Acta Mechanica Sinica 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.