Skip to main content
Erschienen in: Journal of Materials Science 6/2018

Open Access 30.11.2017 | Electronic materials

Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds

verfasst von: M. A. Gharavi, R. Armiento, B. Alling, P. Eklund

Erschienen in: Journal of Materials Science | Ausgabe 6/2018

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Scandium nitride has recently gained interest as a prospective compound for thermoelectric applications due to its high Seebeck coefficient. However, ScN also has a relatively high thermal conductivity, which limits its thermoelectric efficiency and figure of merit (zT). These properties motivate a search for other semiconductor materials that share the electronic structure features of ScN, but which have a lower thermal conductivity. Thus, the focus of our study is to predict the existence and stability of such materials among inherently layered equivalent ternaries that incorporate heavier atoms for enhanced phonon scattering and to calculate their thermoelectric properties. Using density functional theory calculations, the phase stability of TiMgN2, ZrMgN2 and HfMgN2 compounds has been calculated. From the computationally predicted phase diagrams for these materials, we conclude that all three compounds are stable in these stoichiometries. The stable compounds may have one of two competing crystal structures: a monoclinic structure (LiUN2 prototype) or a trigonal superstructure (NaCrS2 prototype; R\( \bar{3} \)mH). The band structure for the two competing structures for each ternary is also calculated and predicts semiconducting behavior for all three compounds in the NaCrS2 crystal structure with an indirect band gap and semiconducting behavior for ZrMgN2 and HfMgN2 in the monoclinic crystal structure with a direct band gap. Seebeck coefficient and power factors are also predicted, showing that all three compounds in both the NaCrS2 and the LiUN2 structures have large Seebeck coefficients. The predicted stability of these compounds suggests that they can be synthesized by, e.g., physical vapor deposition.

Introduction

Thermoelectric materials and devices, which directly convert a thermal gradient into an external voltage, are reliable and low-maintenance power-generating materials used for niche applications such as solid-state cooling or electric power supplying units in deep-space exploration. However, the use of thermoelectrics is presently limited [1] by their low efficiency and high cost. For example, the crustal abundance and global production of tellurium is low [2, 3]. This limits widespread use of the benchmark thermoelectric materials (Bi2Te3 and PbTe). Thus, there is a need for replacement materials.
The thermoelectric efficiency is directly connected to the dimensionless figure of merit:
$$ zT = \left( {\frac{{S^{2} \sigma }}{\kappa }} \right) \times T, $$
where S is the Seebeck coefficient, \( \sigma \) is the electrical conductivity, \( \kappa \) is the thermal conductivity, and T is the absolute temperature [4]. The product \( S^{2} \sigma \) is known as the power factor. In the limit of \( zT \to \infty \), the Carnot engine efficiency (i.e., the maximum efficiency achievable in a heat engine) is obtained. However, designing materials with higher zT values is a difficult challenge, as all three terms are interrelated in a way that typically limits zT to below unity in commonly available materials.
In order to overcome this barrier, Slack proposed the phonon glass–electron crystal (PGEC) approach for thermoelectric material design [57]: one should seek a material with a high Seebeck coefficient value and engineer it in such a way that it will behave like a crystal for electrons, but scatter phonons similarly to glass. As a result, added material optimization processes are required to increase the zT of any given material.
As a starting point for this approach of engineering a high \( zT \) material, prior works have suggested cubic scandium nitride (ScN) [8]. The Seebeck coefficient of ScN is relatively large (reaching − 180 \( \upmu{\text{V}}/{\text{K}} \) at 800 \( {\text{K}} \)) and because of its low electrical resistivity, large power factors between 2.5 and 3.5 × 10−3 \( {\text{Wm}}^{ - 1} {\text{K}}^{ - 2} \) have been reported [9, 10]. Doping and alloying ScN with heavy elements [11, 12] and/or creating artificial layer interfaces such as metal/semiconductor superlattices [1316] can alter properties and decrease the thermal conductivity, resulting in an enhanced zT. Furthermore, ScN can also become p-type by Sc-site doping [17, 18]. Although the direction of research is promising, ScN does have a relatively large thermal conductivity [1922] of approximately 8–12 \( {\text{Wm}}^{ - 1} {\text{K}}^{ - 1} \). Scandium and nitrogen are both light atoms compared to their heavier counterparts such as lead, bismuth and tellurium which effectively scatter phonons [23], and artificial interfaces seen in superlattices are synthesized at a sub micrometer scale, while thermoelectric power generation requires millimeter-sized bulk samples [24]. Also, scandium does not have phonon isotope scattering as it is an isotopically pure element.
In a recent paper, Alling [25] addressed these issues by proposing an equivalent ternary based on ScN. Scandium (which is a group-3 element) can be replaced with one group-2 and one group-4 element in a 50/50 proportion to cover the same electron valence. The final compound should then have a MeAEN2 stoichiometry, with Me representing a transition metal from the group-4 elements and AE belonging to the group-2 (alkaline earth) elements, such as magnesium. TiMgN2 was predicted to be stable using density functional theory (DFT). Band structure calculations predicted stoichiometric TiMgN2 to have a 1.11 eV band gap using the HSE06 [25, 26] hybrid functional. This methodology has also been used by Tholander et al. [27] to predict zinc-based group-4 transition metal nitride stability and crystal structure. While much research has been done regarding Ti–Si–N [2830] and Ti–Al–N [3134] which show superior hardness and/or oxidization resistance compared to TiN, there are much fewer studies reported for Ti–Mg–N [3539]. TiMgN2 may crystallize in the B1–L11 superstructure [25], which could open a new opportunity for hard coating research by inter-layer dissipation of heat or research for hard coatings with better mechanical properties.
In this paper, we continue the work in investigating ternary structures based on ScN. We also computationally study the phase stability, band structure, Seebeck coefficient and power factor of two more candidate compounds potentially useful in thermoelectric applications, ZrMgN2 and HfMgN2. As Ti, Zr and Hf belong to group 4 of the periodic table, all three share similar physical and chemical properties, and it can be assumed that any stable Ti-based ternary may also exist for Zr and Hf.

Computational details

Over 60 different and chemically stoichiometric crystal structures registered in the Inorganic Crystal Structure Database (ICSD) [40] were studied in order to calculate the formation enthalpy of Ti–Mg–N, Zr–Mg–N and Hf–Mg–N and prepare the necessary phase diagrams. Although the binary nitrides are well known, TiMgN2, ZrMgN2 and HfMgN2 are not present in either the Materials Project database [41] or the ICSD. Half of these crystal structures follow the MeMgN2 stoichiometry, while the remaining crystal structures belong to various Mg-, Ti-, Zr- and Hf-based ternaries. In addition, the opposite sequence, MgMeN2, was also studied in case some structures would show a different phase when switching the positions of the metal atoms in their respective sublattice.
First-principles calculations were employed using DFT [42, 43] with the projector augmented wave method (PAW) [44] implemented in the Vienna ab initio simulation package (VASP) [4547] version 5.2. Electronic exchange correlation effects and the electronic band structure were modeled with the generalized gradient approximation (GGA) using Perdew–Burke–Ernzerhof (PBE) functional [48]. It should be noted that the Kohn–Sham gaps of standard GGA calculations are systematically smaller than experimental band gaps, but for the present work this is not an issue since we are mostly concerned with dismissing metallic compositions. To the extent that we identify relevant compounds, they can be further investigated by in-depth theoretical work and/or by laboratory synthesis of the three ternary nitrides. The plane wave energy cutoff was set at 400 eV. The required structure files for the crystal structures were obtained from the ICSD and converted to VASP input files using cif2cell [49]. Phase diagrams were prepared using the software package Pymatgen (Python Materials Genomics) [50], the band structure illustrations by the high-throughput toolkit (httk) [51] and the crystal structures by VESTA [52]. For the phase diagrams, the formation energy per atom was calculated for each ternary compound and related to competing ternary stoichiometries and neighboring binary compounds. The Materials Project database provided the formation enthalpies of all of the binaries (TiN, ZrN, HfN, Mg3N2, etc.).
The present work uses the same correction of the N2 energy as used in the Materials Project, based on work by Wang et al. [53] as standard GGA exchange–correlation functionals in DFT are known to, in general, have systematic errors in the prediction of energy differences between solid and gas phase systems [54]. Hence, to accurately reproduce the formation energy of a system relative to a gas end point, it is common to adjust the gas phase energy.
The calculations used an 11 × 11 × 11 k-point mesh for Brillouin zone sampling and were executed with the Monkhorst–Pack scheme [55]. For band structure calculations, the tetrahedron method was used in order to obtain band gap values with spin polarization included [56].
Finally, the Seebeck coefficient S and power factor \( S^{2} \sigma \tau^{ - 1} \) (being the charge carrier relaxation time) of the predicted semiconductors is calculated at room temperature and 600 K as functions of the chemical potential using Boltzmann transport theory with the constant relaxation time approximation. We use the software BoltzTraP [57] on DFT calculations with a 40 × 40 × 40 k-point mesh for Brillouin zone sampling.

Results

TiMgN2

Figure 1a shows the phase diagram for Ti–Mg–N. Although 28 different crystal structures other than those that follow the MeMgN2 formula (such as Ca4TiN4 [58], perovskite CaTiO3 [59], Ti2AlN and Ti4AlN3 MAX-phases [60]) were tested, only the ordered TiMgN2 stoichiometry is found to be thermodynamically stable relative to known and investigated phases with the other ordered stoichiometries being either unstable or metastable. Random Ti1−x Mg x N solid solutions with the rocksalt structure have, however, been found to be thermodynamically stable for a range of compositions [25]. This precise stoichiometry occurred in 29 of the investigated crystal structures. These include the trigonal NaCrS2 (\( {\text{R}}\bar{3}{\text{mH}} \)) superstructure [61], the tetragonal BaNiS2 (\( {\text{P}}4/{\text{n m m Z}} \)) superstructure [62], tetragonal LiUN2 [63], ZnGeN2 [64] (based on the NaFeO2-beta structure) and the inverse-MAX BaCeN2 [65].
In order to differentiate between these structures, Table 1 lists a selected group of examples with their respective formation enthalpies. These results show that crystallization into the NaCrS2 is the most likely outcome with a − 1.299 eV formation enthalpy and a 0.04 eV difference compared to the LiUN2 structure which agrees with the findings mentioned in Ref. [25]. It should be noted that the difference between the formation enthalpies of these two crystal structures would most likely mean that NaCrS2 is the preferred structure, but LiUN2 is also studied for any comparison needed between TiMgN2, ZrMgN2 and HfMgN2.
Table 1
Formation enthalpies for TiMgN2 crystallized in five different structures
TiMgN2
ICSD id
Formation enthalpy (eV/atom)
Nitride example
82537
− 1.299
SrZrN2 (NaCrS2)
98663
− 1.260
LiUN2
74904
− 1.005
BaZrN2 (BaNiS2)
15144
− 1.234
ZnGeN2 (NaFeO2-beta)
74791
− 1.222
BaCeN2, inverse-MAX
The ICSD id is the entry identification number which the structure is based on. The nitride examples represent actual existing ternary compounds and the respective structures which they crystallize in
Both crystal structures are shown in Fig. 2. The results suggest that TiMgN2 will crystallize into the NaCrS2 superstructure (also viewed as a NaCl-B1 superstructure that includes three alternating layers of Ti and Mg) which could cause phonon scattering at the interface of each layer as mentioned in the introduction. Figure 3a, d shows the band structures for TiMgN2 in the NaCrS2 and LiUN2 structures. According to these results, TiMgN2 is a semiconductor with a Kohn–Sham PBE band gap of 0.26 eV in the NaCrS2 structure (Fig. 3a). However, the case for LiUN2 (Fig. 3d) is different, as band structure calculations show no band gap, i.e., predicting metallic properties. It is possible that TiMgN2 could crystallize in the LiUN2 structure as a metastable phase. Table 2 shows the lattice parameters and the band gap energy in both crystal structures. These results show that although the trigonal NaCrS2 crystal structure remains with only the lattice parameters changing, the LiUN2 structure relaxes from tetragonal to monoclinic according to the calculated unit cell lattice parameters.
Table 2
Lattice parameters, unit cell volumes and band gap values for TiMgN2 crystallized in both NaCrS2 and LiUN2
Crystal structure
Compound (MeMgN2)
a (Å)
b (Å)
c (Å)
Volume (Å3)
Band gap (eV)
NaCrS2 (trigonal)
TiMgN2
2.9997
\( \alpha = 90^\circ \)
2.9997
\( \beta = 90^\circ \)
14.8838
\( \gamma = 120^\circ \)
115.9849
Indirect: 0.26
LiUN2 (tetragonal relaxed into monoclinic)
TiMgN2
5.9777
\( \alpha = 90^\circ \)
5.9777
\( \beta = \)
\( 55.1530^\circ \)
5.2309
\( \gamma = 90^\circ \)
153.3962
No gap: metallic?
Figure 4a, b shows the Seebeck coefficient of TiMgN2 versus the chemical potential at room temperature and 600 K, respectively. Only the NaCrS2 structure was studied as the LiUN2 structure was predicted with no band gap. These results show relatively high Seebeck coefficient values at the Fermi level. Figure 5a, b shows \( \left( {S^{2} \sigma } \right)/\tau \) versus the chemical potential at room temperature and 600 K, respectively. Depending on the assumed relaxation time, predicted power factor values could exceed those of ScN (Fig. 5k, l).

ZrMgN2

Figure 1b shows the phase diagram for ZrMgN2. Also here the only stable ternary has the MeMgN2 stoichiometry. As for the preferred crystal structure, formation enthalpies for the selected crystal structures are shown in Table 3. In contrast to TiMgN2, the LiUN2 structure competes with the NaCrS2 structure with less than 0.01 eV formation enthalpy difference.
Table 3
Formation enthalpies for ZrMgN2 crystallized in five different structures
ZrMgN2
ICSD id
Formation enthalpy (eV/atom)
Nitride example
82537
− 1.307
SrZrN2 (NaCrS2)
98663
− 1.311
LiUN2
74904
− 0.897
BaZrN2 (BaNiS2)
15144
− 1.230
ZnGeN2 (NaFeO2-beta)
74791
− 1.223
BaCeN2, inverse-MAX
The predicted band structures are shown in Fig. 3b, e. In both cases, ZrMgN2 is a semiconductor regardless of crystal structure. However, for the NaCrS2 crystal structure we find an indirect Kohn–Sham PBE band gap of 0.89 eV and for the LiUN2 structure, a direct band gap of 0.46 eV. The respective lattice parameters and band gap energy are shown in Table 4. ZrMgN2 relaxes in a similar way as TiMgN2 with the NaCrS2 structure remaining the same while the tetragonal LiUN2 structure relaxes into a monoclinic structure according to the calculated unit cell lattice parameters.
Table 4
Lattice parameters, unit cell volumes and band gap values for ZrMgN2 crystallized in both NaCrS2 and LiUN2
Crystal structure
Compound (MeMgN2)
a (Å)
b (Å)
c (Å)
Volume (Å3)
Band gap (eV)
NaCrS2 (trigonal)
ZrMgN2
3.2077
\( \alpha = 90^\circ \)
3.2077
\( \beta = 90^\circ \)
15.3237
\( \gamma = 120^\circ \)
136.5495
Indirect: 0.89
LiUN2 (tetragonal relaxed into monoclinic)
ZrMgN2
6.3113
\( \alpha = 90^\circ \)
6.3113
\( \beta = 55.3470^\circ \)
5.5498
\( \gamma = 90^\circ \)
181.8447
Direct: 0.46
Figure 4b, g (room-temperature calculations) and Fig. 4d, h (600 K calculations) shows the Seebeck coefficient of ZrMgN2 versus the chemical potential in the NaCrS2 and the LiUN2 structures. These results show an increase in the Seebeck coefficient values and a slight shift in the chemical potential compared to TiMgN2 with higher values seen in the NaCrS2 structure. Figure 5b, g and d, h shows the \( \left( {S^{2} \sigma } \right)/\tau \) versus chemical potential at room temperature and 600 K, respectively. These results predict power factor values close to the Fermi level which are larger than those of ScN (Fig. 5k, l).

HfMgN2

Figure 1c shows the phase diagram for Hf–Mg–N. Similar to both TiMgN2 and ZrHfN2, the HfMgN2 stoichiometry is predicted to be stable. Table 5 compares a selected group of crystal structures and shows the NaCrS2 and LiUN2 structures with similar formation enthalpies (less than 0.01 eV difference), thus predicting a competition between the two structures.
Table 5
Formation enthalpies for HfMgN2 crystallized in five different structures
HfMgN2
ICSD id
Formation enthalpy (eV/atom)
Nitride example
82537
− 1.447
SrZrN2 (NaCrS2)
98663
− 1.453
LiUN2
74904
− 1.034
BaZrN2 (BaNiS2)
15144
− 1.360
ZnGeN2 (NaFeO2-beta)
74791
− 1.362
BaCeN2, inverse-MAX
Figure 3c, f shows the predicted band structures for both NaCrS2 and LiUN2. Similar to ZrMgN2, an indirect band gap of 1.19 eV is predicted for the NaCrS2 structure, while a 0.77 eV direct band gap is predicted for the LiUN2 structure. The respective lattice parameters and band gap energies are shown in Table 6. Similar to TiMgN2 and ZrMgN2, HfMgN2 preserves the trigonal NaCrS2 structure but relaxes from tetragonal LiUN2 into a monoclinic structure.
Table 6
Lattice parameters, unit cell volumes and band gap values for HfMgN2 crystallized in both NaCrS2 and LiUN2
Crystal structure
Compound (MeMgN2)
a (Å)
b (Å)
c (Å)
Volume (Å3)
Band gap (eV)
NaCrS2 (trigonal)
HfMgN2
3.1679
\( \alpha = 90^\circ \)
3.1679
\( \beta = 90^\circ \)
15.2463
\( \gamma = 120^\circ \)
132.5114
Indirect: 1.19
LiUN2 (tetragonal relaxed into monoclinic)
HfMgN2
6.2300
\( \alpha = 90^\circ \)
6.2300
\( \beta = 55.5036^\circ \)
5.5001
\( \gamma = 90^\circ \)
175.9362
Direct: 0.77
Figure 4e, i (room-temperature calculations) and Fig. 4f, j (600 K calculations) shows the Seebeck coefficient of HfMgN2 versus the chemical potential in the NaCrS2 and the LiUN2 structures. These results show an increase in the Seebeck coefficient values and a larger shift in the chemical potential compared to both TiMgN2 and ZrMgN2 with higher values seen in the NaCrS2 structure. Figure 5e, i and f, j shows the \( \left( {S^{2} \sigma } \right)/\tau \) versus chemical potential at room temperature and 600 K, respectively. These results predict power factor values almost equal to those of ZrMgN2 and larger than that of ScN close to the Fermi level (Fig. 5k, l).

Discussion

For ZrMgN2 and HfMgN2, the formation enthalpies of the NaCrS2 and the LiUN2 structure are close, within the accuracy of our approach. This suggests that both of these structures may be possible to synthesize, i.e., with the one higher in energy as a long-lasting metastable state. The shifting between the NaCrS2 and the LiUN2 structures could be done by choosing suitable substrates for epitaxial stabilization during the synthesis process. Despite that we cannot with certainty determine which of the structures for ZrMgN2 and HfMgN2 are thermodynamically stable, both are semiconductors. This motivates future studies on synthesis for thermoelectrics and other applications. It should be noted that the NaCrS2 structures show indirect band gaps with larger values and large slopes for the density of states at the Fermi level compared to their direct band gap counterparts in the LiUN2 structure. Another feature seen in all three compounds is the relation between band gap values and lattice parameters with the transition metal, Me. As the smaller Ti atom is replaced with the larger Zr atom, the lattice parameters, cell volume and band gap value increase, which is expected. However, only the band gap value increases when Zr is replaced with Hf as the f orbital electrons are not effective at screening the increasing charge, resulting in similar atomic size (lanthanide contraction [66]) and similar lattice parameters.
Although the present results are promising, actual attempts to synthesize these prospective compounds would be important. Similar to the synthesis of MAX-phase [67] thin films, it should be possible to synthesize ordered TiMgN2, ZrMgN2 and HfMgN2 outside thermodynamic equilibrium in a magnetron sputtering system. All of the mentioned elements are vacuum compatible, and one could use the deposition parameters needed for stoichiometric TiN, ZrN, HfN and Mg3N2 to reach a \( {\text{Me}}/{\text{Mg }} = 1 \) ratio and fine-tune the MeMgN2 stoichiometry. References [36, 38] note the deposition temperature for rocksalt (Ti, Mg)N alloys to be between 200 and 300 °C with oxidization resistance close to 700 °C (suitable for mid-temperature thermoelectric applications). If the layered NaCrS2 superstructure is preferred, it would be advisable to use either high-temperature direct growth or low-temperature deposition, followed by high-temperature annealing [68] (in ammonia or nitrogen). In this case, GaN or SiC [69] substrates could be considered for their suitable lattice constant and thermal stability.
As for the thermoelectric properties, the calculated Seebeck coefficient values show that in the range of a moderate change in the Fermi level, high room-temperature Seebeck coefficient values can be achieved (Fig. 4), although it seems that HfMgN2 is either an insulator or would require elemental doping due to the larger shift in the chemical potential.
Note that what we have calculated is the power factor divided by the relaxation time. The results (Fig. 5) can be used as an estimate of the difference in thermoelectric performance at various doping levels between the studied compounds and known materials, e.g., ScN, as shown for comparison in Figs. 4k, l and 5k, l. However, such a comparison is made under the assumptions that the constant relaxation time approximation holds sufficiently well and that the relaxation time for the compounds is similar. For more precise predictions, the relaxation time value needs to be obtained from experimental data, as it can for example for common thermoelectric materials such as Bi2Te3 [70, 71].
As ordered TiMgN2, ZrMgN2 and HfMgN2 have not yet been studied experimentally, such data do not exist, and obtaining meaningful numbers for the electrical conductivity is difficult. However, using experimental data from Burmistrova et al. [19] and the classical equation for conductivity (\( \sigma = n{\text{e}}^{2} \tau m^{ - 1} \)), the constant relaxation time \( \tau \) for ScN (which the ternaries were modeled after) is estimated to be equal to \( 6.5 \times 10^{ - 14} {\text{ s}} \).

Conclusions

Theoretical methods were used to study the phase stability and band structure of TiMgN2, ZrMgN2 and HfMgN2. In all three cases, only MeMgN2 is predicted to be the stable stoichiometry. It is shown that stoichiometric TiMgN2 crystallizes into the hexagonal NaCrS2 superstructure with a 0.26 eV indirect Kohn–Sham PBE band gap. ZrMgN2 and HfMgN2 were also studied, which shows tendency to crystallize in both the NaCrS2 superstructure and the LiUN2 prototype monoclinic structure. Both show semiconducting properties regardless of the crystal structure. ZrMgN2 shows a 0.89 eV indirect band gap when crystallizing into the NaCrS2 structure, while as crystallization into the LiUN2 structure results in a 0.46 eV direct band gap. As for HfMgN2, the band gap increases as crystallization into NaCrS2 results in a 1.19 eV indirect band gap and crystallization into LiUN2 results in a 0.77 eV direct band gap. Lattice parameters and cell volumes increase with the substitution of Ti with Zr, but slightly decrease when Zr is substituted with Hf.
Finally, the Seebeck coefficient and power factor was calculated for all of the semiconducting compounds. The results show that in the range of a moderate change in the Fermi level, high room-temperature Seebeck coefficient values can be achieved.
Thus, the predicted stability and semiconducting properties of these compounds can be further studied both theoretically and experimentally for any prospective thermoelectric properties.

Acknowledgements

The authors acknowledge funding from the European Research Council under the European Community’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 335383, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009 00971), the Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 and 6 programs, the Knut and Alice Wallenberg foundation through the Academy Fellow program and the Swedish Research Council (VR) under Project Nos. 621-2012-4430 and 2016-03365. Financial support by the Swedish Research Council (VR) through International Career Grant No. 330-2014-6336 and Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, is gratefully acknowledged. Financial support from VR Grant No. 2016-04810 and the Swedish e-Science Research Centre (SeRC) is also acknowledged. The authors also wish to thank the Swedish National Infrastructure for Computing (SNIC) which provided access to the necessary supercomputer resources located at the National Supercomputer Center (NSC).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Yang J, Caillat T (2006) Thermoelectric materials for space and automotive power generation. MRS Bull 31:224–229CrossRef Yang J, Caillat T (2006) Thermoelectric materials for space and automotive power generation. MRS Bull 31:224–229CrossRef
2.
Zurück zum Zitat Brown TJ (2011) World mineral statistics: British Geological Survey. Keyworth, Nottingham Brown TJ (2011) World mineral statistics: British Geological Survey. Keyworth, Nottingham
3.
Zurück zum Zitat Amatya R, Ram RJ (2012) Trend for thermoelectric materials and their earth abundance. J Electr Mater 41:1011CrossRef Amatya R, Ram RJ (2012) Trend for thermoelectric materials and their earth abundance. J Electr Mater 41:1011CrossRef
4.
Zurück zum Zitat Goldsmid HJ (2010) Introduction to thermoelectricity. Springer, BerlinCrossRef Goldsmid HJ (2010) Introduction to thermoelectricity. Springer, BerlinCrossRef
5.
Zurück zum Zitat Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, pp 399–432CrossRef Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, pp 399–432CrossRef
6.
Zurück zum Zitat Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448CrossRef Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448CrossRef
7.
Zurück zum Zitat Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431CrossRef Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431CrossRef
8.
Zurück zum Zitat Eklund P, Kerdsongpanya S, Alling B (2016) Transition-metal-nitride-based thin films as novel energy harvesting materials. J Mater Chem C 4:3905–3914CrossRef Eklund P, Kerdsongpanya S, Alling B (2016) Transition-metal-nitride-based thin films as novel energy harvesting materials. J Mater Chem C 4:3905–3914CrossRef
9.
Zurück zum Zitat Kerdsongpanya S, Nong NV, Pryds N, Žukauskaitė A, Jensen J, Birch J, Lu J, Hultman L, Wingqvist G, Eklund P (2011) Anomalously high thermoelectric power factor in epitaxial ScN thin films. Appl Phys Lett 99:232113CrossRef Kerdsongpanya S, Nong NV, Pryds N, Žukauskaitė A, Jensen J, Birch J, Lu J, Hultman L, Wingqvist G, Eklund P (2011) Anomalously high thermoelectric power factor in epitaxial ScN thin films. Appl Phys Lett 99:232113CrossRef
10.
Zurück zum Zitat Burmistrova PV, Zakharov DN, Favaloro T, Mohammed A, Stach EA, Shakouri A, Sands TD (2015) Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates. J Mater Res 30:626–634CrossRef Burmistrova PV, Zakharov DN, Favaloro T, Mohammed A, Stach EA, Shakouri A, Sands TD (2015) Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates. J Mater Res 30:626–634CrossRef
11.
Zurück zum Zitat Kerdsongpanya S, Alling B, Eklund P (2013) Phase stability of ScN-based solid solutions for thermoelectric applications from first-principles calculations. J Appl Phys 114:073512CrossRef Kerdsongpanya S, Alling B, Eklund P (2013) Phase stability of ScN-based solid solutions for thermoelectric applications from first-principles calculations. J Appl Phys 114:073512CrossRef
12.
Zurück zum Zitat Tureson N, Nong NV, Fournier D, Singh N, Acharya S, Schmidt S, Belliard L, Soni A, le Febvrier A, Eklund P (2017) Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying. J Appl Phys 122:025116CrossRef Tureson N, Nong NV, Fournier D, Singh N, Acharya S, Schmidt S, Belliard L, Soni A, le Febvrier A, Eklund P (2017) Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying. J Appl Phys 122:025116CrossRef
13.
Zurück zum Zitat Schroeder JL, Ewoldt DA, Amatya R, Ram RJ, Shakouri A, Sands TD (2014) Bulk-like laminated nitride metal/semiconductor superlattices for thermoelectric devices. J Microelectromech Syst 23:672–680CrossRef Schroeder JL, Ewoldt DA, Amatya R, Ram RJ, Shakouri A, Sands TD (2014) Bulk-like laminated nitride metal/semiconductor superlattices for thermoelectric devices. J Microelectromech Syst 23:672–680CrossRef
14.
Zurück zum Zitat Saha B, Koh YR, Comparan J, Sadasivam S, Schroeder JL, Garbrecht M, Mohammed A, Birch J, Fisher T, Shakouri A, Sands TD (2016) Cross-plane thermal conductivity of (Ti, W)N/(Al, Sc)N metal/semiconductor superlattices. Phys Rev B 93:045311CrossRef Saha B, Koh YR, Comparan J, Sadasivam S, Schroeder JL, Garbrecht M, Mohammed A, Birch J, Fisher T, Shakouri A, Sands TD (2016) Cross-plane thermal conductivity of (Ti, W)N/(Al, Sc)N metal/semiconductor superlattices. Phys Rev B 93:045311CrossRef
15.
Zurück zum Zitat Rawat V, Koh YK, Cahill DG, Sands TD (2009) Thermal conductivity of (Zr, W) N/ScN metal/semiconductor multilayers and superlattices. J Appl Phys 105:024909CrossRef Rawat V, Koh YK, Cahill DG, Sands TD (2009) Thermal conductivity of (Zr, W) N/ScN metal/semiconductor multilayers and superlattices. J Appl Phys 105:024909CrossRef
16.
Zurück zum Zitat Saha B, Koh YR, Feser JP, Sadasivam S, Fisher TS, Shakouri A, Sands TD (2017) Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc)N metal/semiconductor superlattices. J Appl Phys 121:015109CrossRef Saha B, Koh YR, Feser JP, Sadasivam S, Fisher TS, Shakouri A, Sands TD (2017) Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc)N metal/semiconductor superlattices. J Appl Phys 121:015109CrossRef
17.
Zurück zum Zitat Saha B, Naik G, Drachev V, Boltasseva A, Marinero EE, Sands TD (2013) Electronic and optical properties of ScN and (Sc, Mn)N thin films deposited by reactive DC-magnetron sputtering. J Appl Phys 114:063519CrossRef Saha B, Naik G, Drachev V, Boltasseva A, Marinero EE, Sands TD (2013) Electronic and optical properties of ScN and (Sc, Mn)N thin films deposited by reactive DC-magnetron sputtering. J Appl Phys 114:063519CrossRef
18.
Zurück zum Zitat Saha B, Garbrecht M, Perez-Taborda JA, Fawey MH, Koh YR, Shakouri A, Martin-Gonzalez M, Hultman L, Sands TD (2017) Compensation of native donor doping in ScN: carrier concentration control and p-type ScN. Appl Phys Lett 110:252104CrossRef Saha B, Garbrecht M, Perez-Taborda JA, Fawey MH, Koh YR, Shakouri A, Martin-Gonzalez M, Hultman L, Sands TD (2017) Compensation of native donor doping in ScN: carrier concentration control and p-type ScN. Appl Phys Lett 110:252104CrossRef
19.
Zurück zum Zitat Burmistrova PV, Maassen J, Favaloro T, Saha B, Salamat S, Koh YR, Lundstrom MS, Shakouri A, Sands TD (2013) Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates. J Appl Phys 113:153704CrossRef Burmistrova PV, Maassen J, Favaloro T, Saha B, Salamat S, Koh YR, Lundstrom MS, Shakouri A, Sands TD (2013) Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates. J Appl Phys 113:153704CrossRef
20.
Zurück zum Zitat King SW, Davis RF, Nemanich RJ (2014) Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces. J Vac Sci Technol, A 32:061504CrossRef King SW, Davis RF, Nemanich RJ (2014) Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces. J Vac Sci Technol, A 32:061504CrossRef
21.
Zurück zum Zitat Kerdsongpanya S, Sun B, Eriksson F, Jensen J, Lu J, Koh YK, Nong NV, Balke B, Alling B, Eklund P (2016) Experimental and theoretical investigation of Cr1−xScxN solid solutions for thermoelectrics. J Appl Phys 120:215103CrossRef Kerdsongpanya S, Sun B, Eriksson F, Jensen J, Lu J, Koh YK, Nong NV, Balke B, Alling B, Eklund P (2016) Experimental and theoretical investigation of Cr1−xScxN solid solutions for thermoelectrics. J Appl Phys 120:215103CrossRef
22.
Zurück zum Zitat Kerdsongpanya S, Hellman O, Sun B, Koh YK, Lu J, Nong NV, Simak SI, Alling B, Eklund P (2017) Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth. Phys Rev B 96:195417CrossRef Kerdsongpanya S, Hellman O, Sun B, Koh YK, Lu J, Nong NV, Simak SI, Alling B, Eklund P (2017) Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth. Phys Rev B 96:195417CrossRef
23.
Zurück zum Zitat DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703–706CrossRef DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703–706CrossRef
24.
Zurück zum Zitat Schroeder JL (2012) (Hafnium zirconium) nitride/scandium nitride metal/semiconductor superlattices for thermionic energy conversion, PhD Dissertation, Purdue University Schroeder JL (2012) (Hafnium zirconium) nitride/scandium nitride metal/semiconductor superlattices for thermionic energy conversion, PhD Dissertation, Purdue University
25.
Zurück zum Zitat Alling B (2014) Metal to semiconductor transition and phase stability of Ti1−xMgxNy alloys investigated by first-principles calculations. Phys Rev B 89:085112CrossRef Alling B (2014) Metal to semiconductor transition and phase stability of Ti1−xMgxNy alloys investigated by first-principles calculations. Phys Rev B 89:085112CrossRef
26.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef
27.
Zurück zum Zitat Tholander C, Andersson CBA, Armiento R, Tasnádi F, Alling B (2016) Strong piezoelectric response in stable TiZnN2, ZrZnN2, and HfZnN2 found by ab initio high-throughput approach. J Appl Phys 120:225102CrossRef Tholander C, Andersson CBA, Armiento R, Tasnádi F, Alling B (2016) Strong piezoelectric response in stable TiZnN2, ZrZnN2, and HfZnN2 found by ab initio high-throughput approach. J Appl Phys 120:225102CrossRef
28.
Zurück zum Zitat Hao S, Delley B, Stampfl C (2006) Structure and properties of TiN(111)/SixNy/TiN (111) interfaces in superhard nanocomposites: first-principles investigations. Phys Rev B 74:035402CrossRef Hao S, Delley B, Stampfl C (2006) Structure and properties of TiN(111)/SixNy/TiN (111) interfaces in superhard nanocomposites: first-principles investigations. Phys Rev B 74:035402CrossRef
29.
Zurück zum Zitat Hultman L, Bareno J, Flink A, Söderberg H, Larsson K, Petrova V, Oden M, Greene JE, Petrov I (2007) Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: film growth experiments and ab initio calculations. Phys Rev B 75:155437CrossRef Hultman L, Bareno J, Flink A, Söderberg H, Larsson K, Petrova V, Oden M, Greene JE, Petrov I (2007) Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: film growth experiments and ab initio calculations. Phys Rev B 75:155437CrossRef
30.
Zurück zum Zitat Zhang RF, Veprek S (2007) Crystalline-to-amorphous transition in Ti1−xSixN solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations. Phys Rev B 76:174105CrossRef Zhang RF, Veprek S (2007) Crystalline-to-amorphous transition in Ti1−xSixN solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations. Phys Rev B 76:174105CrossRef
31.
Zurück zum Zitat Hörling A, Hultman L, Oden M, Sjölen J, Karlsson L (2002) Thermal stability of arc evaporated high aluminum-content Ti1−xAlxN thin films. J Vac Sci Technol A 20:1815–1823CrossRef Hörling A, Hultman L, Oden M, Sjölen J, Karlsson L (2002) Thermal stability of arc evaporated high aluminum-content Ti1−xAlxN thin films. J Vac Sci Technol A 20:1815–1823CrossRef
32.
Zurück zum Zitat McIntyre D, Greene JE, Håkansson G, Sundgren J-E, Münz W-D (1990) Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: kinetics and mechanisms. J Appl Phys 67:1542–1553CrossRef McIntyre D, Greene JE, Håkansson G, Sundgren J-E, Münz W-D (1990) Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: kinetics and mechanisms. J Appl Phys 67:1542–1553CrossRef
33.
Zurück zum Zitat Mayrhofer PH, Hörling A, Karlsson L, Sjölén J, Larsson T, Mitterer C, Hultman L (2003) Self-organized nanostructures in the Ti–Al–N system. Appl Phys Lett 83:2049–2051CrossRef Mayrhofer PH, Hörling A, Karlsson L, Sjölén J, Larsson T, Mitterer C, Hultman L (2003) Self-organized nanostructures in the Ti–Al–N system. Appl Phys Lett 83:2049–2051CrossRef
34.
Zurück zum Zitat Hörling A, Hultman L, Odén M, Sjölén J, Karlsson L (2005) Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools. Surf Coat Technol 191:384–392CrossRef Hörling A, Hultman L, Odén M, Sjölén J, Karlsson L (2005) Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools. Surf Coat Technol 191:384–392CrossRef
35.
Zurück zum Zitat Banakh O, Balzer M, Fenker M, Blatter A (2004) Spectroellipsometric evaluation of colour and oxidation resistance of TiMgN coatings. Thin Solid Films 455–456:650–655CrossRef Banakh O, Balzer M, Fenker M, Blatter A (2004) Spectroellipsometric evaluation of colour and oxidation resistance of TiMgN coatings. Thin Solid Films 455–456:650–655CrossRef
36.
Zurück zum Zitat Fenker M, Balzer M, Kappl H, Banakh O (2005) Some properties of (Ti, Mg)N thin films deposited by reactive dc magnetron sputtering. Surf Coat Technol 200:227–231CrossRef Fenker M, Balzer M, Kappl H, Banakh O (2005) Some properties of (Ti, Mg)N thin films deposited by reactive dc magnetron sputtering. Surf Coat Technol 200:227–231CrossRef
37.
Zurück zum Zitat Fenker M, Balzer M, Kappl H (2006) Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering—tests and improvements. Thin Solid Films 515:27–32CrossRef Fenker M, Balzer M, Kappl H (2006) Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering—tests and improvements. Thin Solid Films 515:27–32CrossRef
38.
Zurück zum Zitat Hodroj A, Chaix-Pluchery O, Steyer P, Pierson JF (2011) Oxidation resistance of decorative (Ti, Mg)N coatings deposited by hybrid cathodic arc evaporation–magnetron sputtering process. Surf Coat Technol 205:4547–4553CrossRef Hodroj A, Chaix-Pluchery O, Steyer P, Pierson JF (2011) Oxidation resistance of decorative (Ti, Mg)N coatings deposited by hybrid cathodic arc evaporation–magnetron sputtering process. Surf Coat Technol 205:4547–4553CrossRef
39.
Zurück zum Zitat Onder S, Kok FN, Kazmanli K, Urgen M (2013) Magnesium substituted hydroxyapatite formation on (Ti, Mg)N coatings produced by cathodic arc PVD technique. Mater Sci Eng C 33:4337–4342CrossRef Onder S, Kok FN, Kazmanli K, Urgen M (2013) Magnesium substituted hydroxyapatite formation on (Ti, Mg)N coatings produced by cathodic arc PVD technique. Mater Sci Eng C 33:4337–4342CrossRef
42.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRef Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRef
43.
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRef
44.
Zurück zum Zitat Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef
45.
Zurück zum Zitat Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRef
46.
Zurück zum Zitat Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef
47.
Zurück zum Zitat Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef
48.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
50.
Zurück zum Zitat Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V, Persson KA, Ceder G (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319CrossRef Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V, Persson KA, Ceder G (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319CrossRef
52.
Zurück zum Zitat Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef
53.
Zurück zum Zitat Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B 73:195107CrossRef Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B 73:195107CrossRef
54.
Zurück zum Zitat Jain A, Hautier G, Moore CJ, Ong SP, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50:2295–2310CrossRef Jain A, Hautier G, Moore CJ, Ong SP, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50:2295–2310CrossRef
55.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef
56.
Zurück zum Zitat Droghetti A, Baadji N, Sanvito S (2009) MgN: a possible material for spintronic applications. Phys Rev B 80:235310CrossRef Droghetti A, Baadji N, Sanvito S (2009) MgN: a possible material for spintronic applications. Phys Rev B 80:235310CrossRef
57.
Zurück zum Zitat Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71CrossRef Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71CrossRef
58.
Zurück zum Zitat Hunting JL, Szymanski MM, Johnson PE, Kellar CB, DiSalvo FJ (2007) The synthesis and structural characterization of the new ternary nitrides: Ca4TiN4 and Ca5NbN5. J Sol State Chem 180:31–40CrossRef Hunting JL, Szymanski MM, Johnson PE, Kellar CB, DiSalvo FJ (2007) The synthesis and structural characterization of the new ternary nitrides: Ca4TiN4 and Ca5NbN5. J Sol State Chem 180:31–40CrossRef
59.
Zurück zum Zitat Bhalla AS, Guo R, Roy R (2000) The perovskite structure—a review of its role in ceramic science and technology. Mater Res Innovat 4:3–26CrossRef Bhalla AS, Guo R, Roy R (2000) The perovskite structure—a review of its role in ceramic science and technology. Mater Res Innovat 4:3–26CrossRef
60.
Zurück zum Zitat Eklund P, Rosen J, Persson POÅ (2017) Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective. J Phys D Appl Phys 50:113001CrossRef Eklund P, Rosen J, Persson POÅ (2017) Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective. J Phys D Appl Phys 50:113001CrossRef
61.
Zurück zum Zitat Boon JW, Mac Gillavry CH (1942) The crystal structure of potassium thioferrite KFeS2 and sodium thiochromite NaCrS2. Recl Trav Chim Pays-Bas 61:910–920CrossRef Boon JW, Mac Gillavry CH (1942) The crystal structure of potassium thioferrite KFeS2 and sodium thiochromite NaCrS2. Recl Trav Chim Pays-Bas 61:910–920CrossRef
62.
Zurück zum Zitat Grey IE, Steinfink H (1970) Crystal structure and properties of barium nickel sulfide, a square-pyramidal nickel (II) compound. J Am Chem Soc 92:5093–5095CrossRef Grey IE, Steinfink H (1970) Crystal structure and properties of barium nickel sulfide, a square-pyramidal nickel (II) compound. J Am Chem Soc 92:5093–5095CrossRef
63.
Zurück zum Zitat Jacobs H, Heckers U, Zachwieja U, Kockelmann W (2003) Lithium-Uran-Nitride: LiUN2 und Li2UN2. Z Anorg Allg Chem 629:2240–2243CrossRef Jacobs H, Heckers U, Zachwieja U, Kockelmann W (2003) Lithium-Uran-Nitride: LiUN2 und Li2UN2. Z Anorg Allg Chem 629:2240–2243CrossRef
64.
Zurück zum Zitat Zhang Q-H, Wang J, Yeh C-W, Ke W-C, Liu R-S, Tang J-K, Xie M-B, Liang H-B, Su Q (2010) Structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN2 and ZnGeN2:Mn2+ for field emission displays. Acta Mater 58:6728–6735CrossRef Zhang Q-H, Wang J, Yeh C-W, Ke W-C, Liu R-S, Tang J-K, Xie M-B, Liang H-B, Su Q (2010) Structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN2 and ZnGeN2:Mn2+ for field emission displays. Acta Mater 58:6728–6735CrossRef
65.
Zurück zum Zitat Seeger O, Strähle J (1994) BaCeN2, ein Bariumnitridocerat(IV) mit einer Struktur vom anti-TiP-Typ. Zeitschrift für Naturforschung B. 49:1169–1174CrossRef Seeger O, Strähle J (1994) BaCeN2, ein Bariumnitridocerat(IV) mit einer Struktur vom anti-TiP-Typ. Zeitschrift für Naturforschung B. 49:1169–1174CrossRef
66.
Zurück zum Zitat Housecroft CE, Sharpe AG (2004) Inorganic chemistry, 2nd edn. Prentice Hall, New York Housecroft CE, Sharpe AG (2004) Inorganic chemistry, 2nd edn. Prentice Hall, New York
67.
Zurück zum Zitat Eklund P, Beckers M, Jansson U, Högberg H, Hultman L (2010) The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films 518:1851–1878CrossRef Eklund P, Beckers M, Jansson U, Högberg H, Hultman L (2010) The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films 518:1851–1878CrossRef
68.
Zurück zum Zitat Höglund C, Beckers M, Schell N, Borany JV, Birch J, Hultman L (2007) Topotaxial growth of Ti2AlN by solid state reaction in AlN/Ti(0001) multilayer thin films. Appl Phys Lett 90:174106CrossRef Höglund C, Beckers M, Schell N, Borany JV, Birch J, Hultman L (2007) Topotaxial growth of Ti2AlN by solid state reaction in AlN/Ti(0001) multilayer thin films. Appl Phys Lett 90:174106CrossRef
69.
Zurück zum Zitat Levinshtein ME, Rumyantsev SL, Shur MS (2001) Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, New York Levinshtein ME, Rumyantsev SL, Shur MS (2001) Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, New York
70.
Zurück zum Zitat Luo X, Sullivan MB, Quek SY (2012) First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Phys Rev B 86:184111CrossRef Luo X, Sullivan MB, Quek SY (2012) First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Phys Rev B 86:184111CrossRef
71.
Zurück zum Zitat Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO (2003) Transport coefficients from first-principles calculations. Phys Rev B 68:125210CrossRef Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO (2003) Transport coefficients from first-principles calculations. Phys Rev B 68:125210CrossRef
Metadaten
Titel
Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds
verfasst von
M. A. Gharavi
R. Armiento
B. Alling
P. Eklund
Publikationsdatum
30.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1849-0

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Science 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.