Skip to main content

2020 | OriginalPaper | Buchkapitel

13. Theory and Realization of Reference Systems

verfasst von : Athanasios Dermanis

Erschienen in: Mathematische Geodäsie/Mathematical Geodesy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

After a short introduction on the basics of reference system theory and its application for the description of earth rotation, the problem of establishing a reference system for the discrete stations of a geodetic network is studied, from both a theoretical and a practical – implementation point of view.

First the case of rigid networks is examined, which covers also the case of deformable networks with data collected within a time span, small enough for the network shape to remain practically unaltered. The problem of how to analyze observations, which are invariant under particular changes of the reference system, is examined within the framework of least squares estimation theory, with a rank deficiency in the design matrix. The complete theory is presented, including all necessary proofs. Not only of the usual statistical results for the rank deficient linear Gauss-Markov model, but also those of the rich geodetic theory are presented, based on the fact that the physical cause of the rank deficiency is known to be the lack of definition of the reference system. The additional geodetic results are based on the fact that one can easily construct a matrix with columns that are a basis of the null space of the design matrix. Insights are presented into the geometric characteristics of the problem and its relation to the theory of generalized inverses. Passing into deformable networks, a deterministic mathematical model is presented, based of the concept of geodesic lines which are the shortest between linear shape manifolds, associated with the network shape at each instant. Reference system optimality for a discrete network is related to the relevant ideas of Tisserand, developed for the continuum of the earth masses.

The practical problem of choosing a reference system for a coordinate time series is examined, for the case where a linear-in-time model is adopted for the temporal variation of coordinates. The choice of reference system is related to the choice of minimal constraints for obtaining one out of the infinitely many least squares solutions, corresponding to descriptions in different reference systems of the same sequence of network shapes. The a-posteriori change of the reference system is examined, where one moves from one least squares solution to another one, satisfying particular minimal constraints. Kinematic minimal constraints are also introduced, leading to coordinates that demonstrate the minimum coordinate variation and are thus connected to the ideas of Tisserand for reference system optimality. It is also shown how to convert a reference system of a geodetic network to one for the whole continuous earth, or at least the lithosphere, utilizing additional geophysical information.

The last item is the combination of data from four space techniques (VLBI, SLR, GPS, DORIS) in order to establish a global reference system realized though a number of parameters that constitute the International Terrestrial Reference Frame. After a theoretical exposition of the basics of data combination, the various methods of spatial data combination are presented, for both coordinate and Earth Orientation Parameter time series, while alternatives are presented for the choice of the origin (geocenter) and the network scale from the scale of VLBI and SLR. Finally, existing and new methodologies are presented for building post linear models, describing the temporal variation of station coordinates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. Altamimi, Z., Dermanis, A.: The choice of reference system in ITRF formulation. In: Sneeuw, N., et al. (eds.) VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy, Symposia, vol. 137, pp. 329–334. Springer, Berlin (2009)
  2. Altamimi, Z., Dermanis, A.: Theoretical foundations of ITRF determination. The algebraic and the kinematic approach. In: Katsampalos, K.V., Rossikopoulos, D., Spatalas, S., Tokmakidis, K. (eds.) On Measurements of Lands and Constructions. Volume in honor of Prof. Dimitios G. Vlachos. Publication of the School of Rural & Surveying Engineering, Aristotle University of Thessaloniki, pp. 331–359 (2013)
  3. Altamimi, Z., Sillard, P., Boucher, C.: ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J. Geophys. Res. 107(B10), 2214 (2002)
  4. Altamimi, Z., Sillard, P., Boucher, C.: ITRF2000: from theory to implementation. In: Sansò, F. (ed.) V Hotine–Marussi Symposium on Mathematical Geodesy. IAG Symposia, vol. 127, pp. 157–163. Springer, Berlin (2004)
  5. Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., Boucher, C.: ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J. Geophys. Res. 112, B09401 (2007)
  6. Altamimi, Z., Collilieux, X., Métivier, L.: ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85, 457–473 (2011)
  7. Altamimi, Z., Rebischung, P., Métivier, L., Collilieux, X.: ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121, 6109–6131 (2016)
  8. Angermann, D., Drewes, H., Krügel, M., Meisel, B., Gerstl, M., Kelm, R., Müller, H., Seemüller, W., Tesmer, V.: ITRS Combination Center at DGFI: A Terrestrial Reference Frame Realization 2003. Deutsche Geodätische Kommission Reihe B Nr. 313, München (2004)
  9. Angermann, D., Drewes, H., Gerstl, M., Krügel, M., Meisel, B.: DGFI combination methodology for ITRF2005 computation. In: Drewes, H. (ed.) Geodetic Reference Frames. IAG Symposia, vol. 134, pp. 11–16. Springer, Berlin (2009)
  10. Artz, T., Bernhard, L., Nothnagel, A., Steigenberger, P., Tesmer, S.: Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations. J. Geod. 86, 221–239 (2012)
  11. Baarda, W.: S-Transformations and Criterion Matrices. Netherlands Geodetic Commission, Publ in Geodesy, New Series, vol. 5, no. 1, Delft (1973). https://​www.​ncgeo.​nl/​downloads/​18Baarda.​pdf
  12. Baarda, W.: Linking up spatial models in geodesy. Extended S-Transformations. Netherlands Geodetic Commission, Publ. in Geodesy, New Series, no. 41, Delft (1995). https://​www.​ncgeo.​nl/​downloads/​41Baarda.​pdf
  13. Biagi, L., Sanso, F.: Sistemi di riferimento in geodesia: algebra e geometria die minimi quadrati per un modello con deficienza di rango. Bollettino di Geodesia e Scienze Affini. Parte prima: Anno LXII, N. 4, 261–284. Parte seconda: Anno LXIII, N. 1, 29–52. Parte terza: Anno LXIII, N. 2, 129–149 (2003)
  14. Bjerhammar, A.: Rectangular reciprocal matrices with special emphasis to geodetic calculations. Bulletin Géodésique 52, 188–220 (1951)
  15. Blaha, G.: Inner adjustment constraints with emphasis on range observations. Department of Geodetic Science, Report 148, The Ohio State University, Columbus (1971)
  16. Blaha, G.: Free networks: minimum norm solution as obtained by the inner adjustment constraint method. Bull Géodésique 56, 209–219 (1982)
  17. Bolotin, S., Bizouard, C., Loyer, S., Capitaine, N.: High frequency variations of the earth’s instantaneous angular velocity vector. Determination by VLBI data analysis. Astron. Astrophys. 317, 601–609 (1997)
  18. Capitaine, N., Guinod, B., Souchay, J.: A non-rotating origin of the instantaneous equator: definition, properties and use. Cel. Mech. 39, 283–307 (1986)
  19. Chatzinikos, M., Dermanis, A.: A comparison of existing and new methods for the analysis of nonlinear variations in coordinate time series. In: IUGG 2015, Prague, 22 June–3 July 2015. Available at: https://​www.​researchgate.​net
  20. Chatzinikos, M., Dermanis, A.: A coordinate-invariant model for deforming geodetic networks: understanding rank deficiencies, non-estimability of parameters, and the effect of the choice of minimal constraints. J. Geod. 91, 375–396 (2017)
  21. Chatzinikos, M., Dermanis, A.: Interpretation of numerically detected rank defects in GNSS data analysis problems in terms of deficiencies in reference system definition. GPS Solutions 21, 1239–1250 (2017)
  22. Chen, Q., van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., Rebischung, P.: Singular spectrum analysis for modeling seasonal signals from GPS time series. J. Geodyn. 72, 25–35 (2013)
  23. Dermanis, A.: The Non-Linear and the Space-Time Datum problem. Paper presented at the Meeting “Mathematische Methoden der Geodaesie”, Mathematisches Forschungsinstitut Oberwolfach, 1–7 Oct 1995. Available at: http://​der.​topo.​auth.​gr, https://​www.​researchgate.​net/​
  24. Dermanis, A.: Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem. J. Geod. 72(2), 71–100 (1998)
  25. Dermanis, A.: Establishing global reference frames. Nonlinear, temporal, geophysical and stochastic aspects. Invited paper presented at the IAG international symposium Banff, Alberta, 31 July–4 Aug 2000 (2000). In: Sideris, M.G. (ed) Gravity, Geoid and Geodynamics”, IAG Symposia, vol. 123, pp. 35–42. Springer, Berlin (2002)
  26. Dermanis, A.: Global reference frames: connecting observation to theory and geodesy to geophysics. In: IAG 2001 Scientific Assembly “Vistas for Geodesy in the New Milennium”, Budapest, 2–8 Sept 2001. Available at http://​der.​topo.​auth.​gr, https://​www.​researchgate.​net/​
  27. Dermanis, A.: Some remarks on the description of earth rotation according to the IAU 2000 resolutions. From Stars to Earth and Culture. In honor of the memory of Professor Alexandros Tsioumis, pp. 280–291. School of Rural & Surveying Engineering, The Aristotle University of Thessaloniki (2003)
  28. Dermanis, A.: The rank deficiency in estimation theory and the definition of reference frames. In: Sansò, F. (ed.) V Hotine-Marussi Symposium on Mathematical Geodesy, Matera, 17–21 June 2003. International Association of Geodesy Symposia, vol. 127, pp. 145–156. Springer, Heidelberg (2003)
  29. Dermanis, A.: Coordinates and Reference Systems. Ziti Publications, Thessaloniki (2005)
  30. Dermanis, A.: Compatibility of the IERS earth rotation representation and its relation to the NRO conditions. Proceedings, Journées 2005 Systèmes de Référence Spatio-Temporels “Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions”, Warsaw, 19–21 Sept 2005, pp. 109–112 (2005)
  31. Dermanis, A.: The ITRF beyond the “Linear” model. Choices and challenges. In: Xu, P., Liu, J., Dermanis, A.: (eds.) VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. International Association of Geodesy Symposia, vol. 132, pp. 111–118. Springer (2006) (Invited presentation at the VI Hotine-Marussi Symposium, Wuhan, 29 May–2 June 2006)
  32. Dermanis, A.: On the alternative approaches to IITRF formulation. A theoretical comparison. IUGG General Assembly, Melbourne. In: Rizos, C., Willis, P. (eds.) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol. 139, pp. 223–229. Springer, Berlin/Heidelberg (2014)
  33. Dermanis, A.: Global reference systems: theory and open questions. Invited paper at the Academia dei Lincei Session, VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, 17–21 June 2013. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds.) VIII Hotine-Marussi Symposium on Mathematical Geodesy, IAG Symposia, vol. 142, pp. 9–16. Springer International Publishing, Switzerland (2016)
  34. Dermanis, A., Sansò, F.: Different equivalent approaches to the geodetic reference system. Rendiconti della Accademia dei Lincei, Scienze fisiche e naturali. On-Line-First (volume in print) (2018)
  35. Dow, J., Neilan, R.E., Rizos, C.: The international GNSS service in a changing landscape of global navigation satellite systems. J. Geod. 83(3–4), 191–198 (2009). https://​doi.​org/​10.​1007/​s00190-008-0300-3
  36. Elsner, J.B., Tsonis, A.A.: Singular Spectrum Analysis. A New Tool in Time Series Analysis. New York, Plenum Press (1996)
  37. Golyandina, N., Zhigljavsky, A.: Singular Spectrum Analysis for Time Series. Springer Briefs in Statistics. Springer (2013). ISBN:978-3-642-34912-6
  38. Grafarend, E., Schaffrin, B.: Unbiased free net adjustment. Surv. Rev. 22(171), 200–218 (1974)
  39. Grafarend, E., Schaffrin, B.: Equivalence of estimable quantities and invariants in geodetic networks. Zeitschrift für Vemessungswesen 101(11), 485–491 (1976)
  40. Gross, J.: The general Gauss-Markov model with possibly singular dispersion matrix. J. Stat. Pap. 45, 311–336 (2004)
  41. Koch, K.-R.: Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin (1999)
  42. Kotsakis, C.: Generalized inner constraints for geodetic network densification problems. J. Geodesy 87, 661–673 (2013)
  43. Lavallée, D.A., van Dam, T., Blewitt, G., Clarke, P.J.: Geocenter motions from GPS: a unified observation model. J. Geophys. Res. Solid Earth 111(B5) (2006). https://​doi.​org/​10.​1029/​2005JB003784
  44. Meindl, M., Beutler, G., Thaller, D., Dach, R., Jäggi, A.: Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv. Space Res. 51(7), 1047 (2013)
  45. Meissl, P.: Die innere Genauigkeit eines Punkthaufens. Österreichers Zeitschrift für Vermessungswesen 50, 159–165 and 186–194 (1962)
  46. Meissl, P.: über die innere Genauigkeit dreidimensionalern Punkthaufen. Zeitschrift für Vermessungswesen, 1965, 90. Jahrgang, Heft 4, 109–118 (1965)
  47. Meissl, P.: Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens. Deutsche Geodätische Kommission, Reihe A, Nr. 61, 8–21 (1969)
  48. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26(9), 394–95 (1920)
  49. Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth. Cambridge University Press, London (1960)
  50. Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 406–413 (1955)
  51. Pearlman, M.R., Degnan, J.J., Bosworth, J.M.: The international laser ranging service. Adv. Space Res. 30(2), 135–143 (2002)
  52. Petit, G., Luzum, B.: IERS Conventions. IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main 2010. Working version under continuous updating is available at http://​iers-conventions.​obspm.​fr/​updates/​2010updatesinfo.​php (2010)
  53. Rangelova, E., van der Wal, W., Sideris, M.G., Wu, P.: Spatiotemporal analysis of the GRACE-derived mass variations in North America by means of multi-channel singular spectrum analysis. In: Mertikas, S.P. (ed.) Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia, vol. 135, pp. 539–546. Springer, Berlin/Heidelberg (2010)
  54. Rao, C.R.: Unified Theory of Linear Estimation. Sankhya, Series A, vol. 33, pp. 371–394 (1971). Corrigenda. Sankhya, Series A, Springer, vol. 34, pp. 194, 477 (1972)
  55. Rao, C.R.: Unified theory of least squares. Commun. Stat. Theory Methods 1(1), 1–8 (1973)
  56. Rao, C.R.: Linear Statistical Inference and Its Applications, 2nd edn. Wiley, New York (1973)
  57. Rebischung, P., Altamimi, Z., Springer, T.: A colinearity diagnosis of the GNSS geocenter determination. J. Geod. 88(1), 65–85 (2014). https://​doi.​org/​10.​1007/​s00190-013-0669-5
  58. Rothacher, M., Angermann, D., Artz, T., Bosch, W., Drewes, H., Gerstl, M., Kelm, R., König, D., König, R., Meisel, B., Müller, H., Nothnagel, A., Panafidina, N., Richter, B., Rudenko, S., Schwegmann, W., Seitz, M., Steigenberger, P., Tesmer, S., Tesmer, V., Thaller, D.: GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations. J. Geod. 85, 679–705 (2011)
  59. Schuh, H., Behrend, D.: VLBI: a fascinating technique for geodesy and astrometry. J. Geodyn. 61, 68–80 (2012). https://​doi.​org/​10.​1016/​j.​jog.​2012.​07.​007
  60. Seitz, M., Angermann, D., Blossfeld, M., Drewes, H., Gerstl, M.: The 2008 DGFI realization of the ITRS: DTRF2008. J. Geod. 86, 1097–1123 (2012)
  61. Tisserand, F.: Traité de Mécanique Céleste. Gauthieu-Villars, Paris (1889)
  62. Willis, P., Fagard, H., Ferraged, P., Lemoinee, F.G., Noll, C.E., Noomen, R., Otten, M., Ries, J.C., Rothacher, M., Soudarin, L., Tavernier, G., Valette, J.-J.: The international DORIS service: toward maturity. Adv. Space Res. 45(12), 1408–1420 (2010). https://​doi.​org/​10.​1016/​j.​asr.​2009.​11.​018
  63. Zhu, S.-Y., Mueller, I.I.: Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame. Bull. Geod. 57(1983), 29–42 (1983)
Metadaten
Titel
Theory and Realization of Reference Systems
verfasst von
Athanasios Dermanis
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55854-6_107