Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Theory of Generalised Heaps and Generalised Groups

verfasst von : Christopher D. Hollings, Mark V. Lawson

Erschienen in: Wagner’s Theory of Generalised Heaps

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this long paper was to develop the theories of generalised heaps and generalised groups in their mutual connections. To this end, Wagner began by introducing the new notion of a semiheap: a system with a ternary operation satisfying certain conditions. He explored some of the basic properties of semiheaps, as well as setting out elements of the theory of binary relations, the use of which was central to his approach. He next moved to the consideration of semigroups with involution, which turn out to have a natural connection with semiheaps, namely that any semiheap may be embedded in such a semigroup. Wagner then restricted his attention to a specific class of semigroups with involution: generalised groups (a.k.a. inverse semigroups), and the class of semiheaps with which they are closely associated: generalised heaps. He established elementary theories for these objects, and showed, for example, that any generalised heap may be embedded in a generalised group. These theories were then further expanded via the exploration of certain special binary relations in generalised heaps and generalised groups: the compatibility relation and the canonical order relation. The final section of the paper applies the previously developed notions to the context of binary relations and partial mappings and transformations: semiheaps and generalised heaps have a natural interpretation as abstractions of systems of binary relations or partial mappings between different sets, whilst semigroups and generalised groups apply in the case of partial transformations of a single set. It is proved that every generalised heap admits a representation by means of partial mappings, whilst every generalised group admits a representation via partial transformations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the theory of binary relations, we use the notation ofBourbaki [3]: \(\mathop{\rho }\limits^{-1}\) denotes the inverseof a binary relation ρ, and σρ denotes the product of binary relations ρ and σ.
 
2
For the case of commutative groups, it was considered earlier byPrüfer [10].
 
3
FollowingBourbaki [3], we use the term order relation in a given set to mean a reflexive, anti-symmetric and transitive binary relation between its elements, i.e., that which other authors (see, for example, [2]) call a partial order relation.
 
4
For the definition of the union of sets, see [3].
 
5
Our use of our notation from mathematical logic is inessentially distinct from that of Lorenzen [15]. The advantage of the notation of Lorenzenover that of other authors is that, on the one hand, it best expresses the principle of duality, and, on the other, it accords with the corresponding notation in set theory. The similarity of the notation for the universal quantifier and conjunction, and of that for the existential quantifier and disjunction, is justified from the logical point of view by the fact that for the case of a finite domain [[550]] of variation of a variable, the universal quantifier is expressed by means of conjunction, and the existential quantifier by disjunction. Furthermore, this corresponds to the notation by similar signs of the intersection of two subsets or of an arbitrary set of subsets, and of the union of two subsets or of an arbitrary set of subsets.
 
6
In contrast to Bourbaki [3], we will systematically employ the notion of multivalued functions in connection with the theory of binary relations.
 
7
By \(\mathop{\rho }\limits^{n}\) we denote the n-th power of the binary relation ρ:
$$\displaystyle{\mathop{\rho }\limits^{n} =\mathop{\underbrace{ \rho \circ \cdots \circ \rho }}\limits _{n}.}$$
 
8
This theorem is a generalisation of one proved by Lyapin [8] for semigroups.
 
9
The empty subset of a semigroup may also be considered a subsemigroup.
 
10
It is clear that the inverted semiheap of a generalised heap is a generalised heap.
 
11
In the general case, if we have an arbitrary binary relation ρK × L, we can define a similar function in \(\mathfrak{P}(K)\), taking values in \(\mathfrak{P}(L)\), by means of the formula
$$\displaystyle{\rho (\mathfrak{k}) =\bigcap _{k\in \mathfrak{k}}\rho \langle k\rangle.}$$
This function represents another form of the extension of the function defined by ρ to the set of subsets, which, in contrast to the union extension (8.1.26), is naturally called the intersection extension (see [12]).
 
12
This theorem has been proved by Rees (see [11]) for the case of a generalised group of one-to-one partial transformations.
 
13
Using the evident proposition that a generalised group considered as a generalised heap is a heap if and only if it is a group.
 
14
By \(\overbrace{\varphi ^{-1}}^{-1}\), we mean the inverse binary relation for φ−1.
 
15
From the definition (8.1.7) of lateral commutativity of a semiheap, it is clear that lateral commutativity is a necessary and sufficient condition for the identity transformation to be an anti-automorphism.
 
Literatur
1.
Zurück zum Zitat Baer, R.: Zur Einführung des Scharbegriffs. J. Reine Angew. Math. 163, 199–207 (1929)MATH Baer, R.: Zur Einführung des Scharbegriffs. J. Reine Angew. Math. 163, 199–207 (1929)MATH
2.
Zurück zum Zitat Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1948); Russian translation: IL, Moscow (1952) Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1948); Russian translation: IL, Moscow (1952)
3.
Zurück zum Zitat Bourbaki, N.: Théorie des Ensembles. Hermann, Paris (1939)MATH Bourbaki, N.: Théorie des Ensembles. Hermann, Paris (1939)MATH
4.
Zurück zum Zitat Bourbaki, Algèbre, I. Structures Algèbriques. Hermann, Paris (1942) Bourbaki, Algèbre, I. Structures Algèbriques. Hermann, Paris (1942)
5.
Zurück zum Zitat Brandt, H.: Über eine Verallgemeinerung des Gruppenbegriffs. Math. Ann. 96, 360–365 (1926)CrossRef Brandt, H.: Über eine Verallgemeinerung des Gruppenbegriffs. Math. Ann. 96, 360–365 (1926)CrossRef
7.
Zurück zum Zitat Croisot, R.: Une interprétation des relations d’équivalences dans un ensemble. C. R. Acad. Sci. Paris 226, 616–617 (1948)MathSciNetMATH Croisot, R.: Une interprétation des relations d’équivalences dans un ensemble. C. R. Acad. Sci. Paris 226, 616–617 (1948)MathSciNetMATH
8.
Zurück zum Zitat Lyapin, E.S.: Normal complexes of associative systems. Izv. Akad. Nauk SSSR Ser. Mat. 14, 179–192 (1950) (in Russian)MathSciNet Lyapin, E.S.: Normal complexes of associative systems. Izv. Akad. Nauk SSSR Ser. Mat. 14, 179–192 (1950) (in Russian)MathSciNet
9.
Zurück zum Zitat Mostowski, A.: Logika matematyczna: kurs uniwersytecki. Monografie matematyczne, vol. 18. Uniwersytet Warszawski, Warszawa-Wrocław (1948) Mostowski, A.: Logika matematyczna: kurs uniwersytecki. Monografie matematyczne, vol. 18. Uniwersytet Warszawski, Warszawa-Wrocław (1948)
11.
Zurück zum Zitat Rees, D.: On the group of a set of partial transformations. J. Lond. Math. Soc. 22, 281–284 (1948)MathSciNetMATH Rees, D.: On the group of a set of partial transformations. J. Lond. Math. Soc. 22, 281–284 (1948)MathSciNetMATH
13.
Zurück zum Zitat Sushkevich, A.K.: Theory of Generalised Groups. DNTVU, Kharkov-Kiev (1937) (in Russian) Sushkevich, A.K.: Theory of Generalised Groups. DNTVU, Kharkov-Kiev (1937) (in Russian)
14.
Zurück zum Zitat Wagner, V.V.: A ternary algebraic operation in the theory of coordinate structures. Dokl. Akad. Nauk SSSR 81(6), 981–984 (1951) (in Russian) [see Chapter 5] Wagner, V.V.: A ternary algebraic operation in the theory of coordinate structures. Dokl. Akad. Nauk SSSR 81(6), 981–984 (1951) (in Russian) [see Chapter 5]
Metadaten
Titel
Theory of Generalised Heaps and Generalised Groups
verfasst von
Christopher D. Hollings
Mark V. Lawson
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-63621-4_8