Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2017

01.02.2017 | Review

Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine

verfasst von: Yuri I. Golovin, Natalia L. Klyachko, Alexander G. Majouga, Marina Sokolsky, Alexander V. Kabanov

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnology, Biology, and Medicine 11:825–833. doi:10.1016/j.nano.2014.12.011 Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnology, Biology, and Medicine 11:825–833. doi:10.​1016/​j.​nano.​2014.​12.​011
Zurück zum Zitat Ahmed Z, Wieraszko A (2015) Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics 36:386–397. doi:10.1002/bem.21917 CrossRef Ahmed Z, Wieraszko A (2015) Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics 36:386–397. doi:10.​1002/​bem.​21917 CrossRef
Zurück zum Zitat Alshits VI, Darinskaya EV, Koldaeva MV, Petrzhik EA (2008) Magnetoplastic effect in nonmagnetic crystals. In: Hirth JP (ed) Dislocations in Solids, vol 14. Elsevier, Amsterdam, pp 333–437 Alshits VI, Darinskaya EV, Koldaeva MV, Petrzhik EA (2008) Magnetoplastic effect in nonmagnetic crystals. In: Hirth JP (ed) Dislocations in Solids, vol 14. Elsevier, Amsterdam, pp 333–437
Zurück zum Zitat Amstad E, Kohlbrecher J, Muller E, Schweizer T, Textor M, Reimhult E (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11:1664–1670. doi:10.1021/nl2001499 CrossRef Amstad E, Kohlbrecher J, Muller E, Schweizer T, Textor M, Reimhult E (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11:1664–1670. doi:10.​1021/​nl2001499 CrossRef
Zurück zum Zitat Andrä W, Nowak H (eds) (2007) Magnetism in medicine: a handbook, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Andrä W, Nowak H (eds) (2007) Magnetism in medicine: a handbook, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Zurück zum Zitat Andrä W, d'Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J of Magnetism and Magnetic Materials 194:197–203. doi:10.1016/s0304-8853(98)00552-6 CrossRef Andrä W, d'Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J of Magnetism and Magnetic Materials 194:197–203. doi:10.​1016/​s0304-8853(98)00552-6 CrossRef
Zurück zum Zitat Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24:517–524. doi:10.1021/cm203000u CrossRef Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24:517–524. doi:10.​1021/​cm203000u CrossRef
Zurück zum Zitat Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin
Zurück zum Zitat Banchelli M, Nappini S, Montis C, Bonini M, Canton P, Bertia D, Baglioni P (2014) Magnetic nanoparticle clusters as actuators of ssDNA release. Phys Chem Chem Phys 16:10023–10031. doi:10.1039/C3CP55470H CrossRef Banchelli M, Nappini S, Montis C, Bonini M, Canton P, Bertia D, Baglioni P (2014) Magnetic nanoparticle clusters as actuators of ssDNA release. Phys Chem Chem Phys 16:10023–10031. doi:10.​1039/​C3CP55470H CrossRef
Zurück zum Zitat Bañobre-López M, Piñeiro Y, López-Quintela MA, Rivas J (2014) Magnetic nanoparticles for biomedical applications. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 457–493CrossRef Bañobre-López M, Piñeiro Y, López-Quintela MA, Rivas J (2014) Magnetic nanoparticles for biomedical applications. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 457–493CrossRef
Zurück zum Zitat Barbosa N, Agulles-Pedrós L, Daza A, Lozano A (2013) Non-ionizing biological effects and security issues in magnetic resonance. Rev Colomb Radiol 24(4):3790–3795 Barbosa N, Agulles-Pedrós L, Daza A, Lozano A (2013) Non-ionizing biological effects and security issues in magnetic resonance. Rev Colomb Radiol 24(4):3790–3795
Zurück zum Zitat Barnes FS, Greenebaum B (eds) (2007) Handbook of biological effects of electromagnetic fields. Bioengineering and biophysical aspects of electromagnetic fields, Third edn. CRC, Boca Raton Barnes FS, Greenebaum B (eds) (2007) Handbook of biological effects of electromagnetic fields. Bioengineering and biophysical aspects of electromagnetic fields, Third edn. CRC, Boca Raton
Zurück zum Zitat Bichurin M, Petrov V, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68: 054402-(1–13). doi: 10.1103/PhysRevB.68.054402 Bichurin M, Petrov V, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68: 054402-(1–13). doi: 10.​1103/​PhysRevB.​68.​054402
Zurück zum Zitat Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A (2016) Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J of Nanomedicine. 11:3191–3203. doi:10.2147/IJN.S110542 CrossRef Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A (2016) Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J of Nanomedicine. 11:3191–3203. doi:10.​2147/​IJN.​S110542 CrossRef
Zurück zum Zitat Bingi VN (2011) Fundamentals of electromagnetic biophysics. PysMatLit, Moscow (in Russian) Bingi VN (2011) Fundamentals of electromagnetic biophysics. PysMatLit, Moscow (in Russian)
Zurück zum Zitat Binhi VN (2002) Magnetobiology: underlying physical problems. Academic, San Diego Binhi VN (2002) Magnetobiology: underlying physical problems. Academic, San Diego
Zurück zum Zitat Stavroulakis P (ed) (2003) Biological effects of electromagnetic fields. Springer, Berlin Stavroulakis P (ed) (2003) Biological effects of electromagnetic fields. Springer, Berlin
Zurück zum Zitat Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6:43989–44012. doi:10.1039/C6RA02129H CrossRef Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6:43989–44012. doi:10.​1039/​C6RA02129H CrossRef
Zurück zum Zitat Bohara RA, Throat ND, Chaurasia AK, Pawar SH (2015) Cancer cells extinction through magnetic fluid hyperthermia treatment produced by superparamagnetic Co-Zn ferrite nanoparticles. RSC Adv 5:47225–47234. doi:10.1039/C5RA04553C CrossRef Bohara RA, Throat ND, Chaurasia AK, Pawar SH (2015) Cancer cells extinction through magnetic fluid hyperthermia treatment produced by superparamagnetic Co-Zn ferrite nanoparticles. RSC Adv 5:47225–47234. doi:10.​1039/​C5RA04553C CrossRef
Zurück zum Zitat Bohara RA, Yadav HM, Throat ND, Mali SS, Hong CK, Nanaware SG, Pawar SH (2014) Synthesis of functionalized Co0.5Zn0.5Fe2O4 nanoparticles for biomedical applications. J. of Magnetism and Magnetic Materials 378:397–401. doi:10.1016/j.jmmm.2014.11.063 CrossRef Bohara RA, Yadav HM, Throat ND, Mali SS, Hong CK, Nanaware SG, Pawar SH (2014) Synthesis of functionalized Co0.5Zn0.5Fe2O4 nanoparticles for biomedical applications. J. of Magnetism and Magnetic Materials 378:397–401. doi:10.​1016/​j.​jmmm.​2014.​11.​063 CrossRef
Zurück zum Zitat Bohnert J, Gräser M, Gleich B, Dössel O (2012) Experimental thresholds of magnetically induced currents via a figure-of-eight coil up to 25 kHz. Biomed Tech 57:185–191. doi:10.1515/bmt-2012-0007 Bohnert J, Gräser M, Gleich B, Dössel O (2012) Experimental thresholds of magnetically induced currents via a figure-of-eight coil up to 25 kHz. Biomed Tech 57:185–191. doi:10.​1515/​bmt-2012-0007
Zurück zum Zitat Branquinho LC, Marcus S, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3: 2887-(1–10). doi:10.1038/srep02887 Branquinho LC, Marcus S, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3: 2887-(1–10). doi:10.​1038/​srep02887
Zurück zum Zitat Brezovich IA (1988) Low frequency hyperthermia: capacitive and ferromagnetic seed methods. Med Phys Monograph 16:82–111 Brezovich IA (1988) Low frequency hyperthermia: capacitive and ferromagnetic seed methods. Med Phys Monograph 16:82–111
Zurück zum Zitat Buchachenko AL (2015) Magneto-biology and medicine. Nova Science, New York Buchachenko AL (2015) Magneto-biology and medicine. Nova Science, New York
Zurück zum Zitat Buckway B, Ghandehari H (2016) Nanotheranostics and in-vivo imaging. In: Howard KA et al (eds) Nanomedicine advances in delivery science and technology. Springer, New York, pp 97–129. doi:10.1007/978-1-4939-3634-2_6 Buckway B, Ghandehari H (2016) Nanotheranostics and in-vivo imaging. In: Howard KA et al (eds) Nanomedicine advances in delivery science and technology. Springer, New York, pp 97–129. doi:10.​1007/​978-1-4939-3634-2_​6
Zurück zum Zitat Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748CrossRef Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748CrossRef
Zurück zum Zitat Buzug TM, Borgert J (eds) (2012) Magnetic particle imaging. A novel SPIO nanoparticle imaging technique. Springer Buzug TM, Borgert J (eds) (2012) Magnetic particle imaging. A novel SPIO nanoparticle imaging technique. Springer
Zurück zum Zitat Carslaw HS, Jaeher JC (1959) Conduction of heat in solids. Clarendon, Oxford Carslaw HS, Jaeher JC (1959) Conduction of heat in solids. Clarendon, Oxford
Zurück zum Zitat Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, Brazdeikis A, Decuzzi P (2012) Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 8(2): e57332-(1–14) Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, Brazdeikis A, Decuzzi P (2012) Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 8(2): e57332-(1–14)
Zurück zum Zitat Chang L, Liu XL, Fan DD, Miao YQ, Zhang H, Ma HP, Liu QY, Ma P, Xue WM, Luo YE, Fan HM (2016) The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles. Int. J. of Nanomedicine 2016:1175–1185. doi:10.2147/IJN.S101741 Chang L, Liu XL, Fan DD, Miao YQ, Zhang H, Ma HP, Liu QY, Ma P, Xue WM, Luo YE, Fan HM (2016) The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles. Int. J. of Nanomedicine 2016:1175–1185. doi:10.​2147/​IJN.​S101741
Zurück zum Zitat Chen SW, Lai JJ, Chiang CL, Chen CL (2012) Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 83(6):064701. doi:10.1063/1.4723814 CrossRef Chen SW, Lai JJ, Chiang CL, Chen CL (2012) Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 83(6):064701. doi:10.​1063/​1.​4723814 CrossRef
Zurück zum Zitat Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910. doi:10.1126/science.1226338 CrossRef Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910. doi:10.​1126/​science.​1226338 CrossRef
Zurück zum Zitat Chiolerio A, Chiodoni A, Allia P, Martino P (2014) Magnetite and other Fe-oxide nanoparticles. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 213–246CrossRef Chiolerio A, Chiodoni A, Allia P, Martino P (2014) Magnetite and other Fe-oxide nanoparticles. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 213–246CrossRef
Zurück zum Zitat Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation, with applications to stochastic problems in physics, chemistry, and electrical engineering, 2nd edn. World Scientific Publishing Co., Pte. Ltd., SingaporeCrossRef Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation, with applications to stochastic problems in physics, chemistry, and electrical engineering, 2nd edn. World Scientific Publishing Co., Pte. Ltd., SingaporeCrossRef
Zurück zum Zitat Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.2147/IJN.S77081 CrossRef Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.​2147/​IJN.​S77081 CrossRef
Zurück zum Zitat Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129. doi:10.1021/nn201822b CrossRef Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129. doi:10.​1021/​nn201822b CrossRef
Zurück zum Zitat CSS K (ed) (2009) Magnetic nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim CSS K (ed) (2009) Magnetic nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Zurück zum Zitat de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610. doi:10.1021/jp310771p CrossRef de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610. doi:10.​1021/​jp310771p CrossRef
Zurück zum Zitat Demirci U, Khademhosseini A, Langer R, Blander J (2013) Microfluidic technologies for human health. World Scientific, SingaporeCrossRef Demirci U, Khademhosseini A, Langer R, Blander J (2013) Microfluidic technologies for human health. World Scientific, SingaporeCrossRef
Zurück zum Zitat Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35(24):6400–6411. doi:10.1016/j.biomaterials.2014.04.036 CrossRef Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35(24):6400–6411. doi:10.​1016/​j.​biomaterials.​2014.​04.​036 CrossRef
Zurück zum Zitat Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006a) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobioscience 5:173–177CrossRef Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006a) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobioscience 5:173–177CrossRef
Zurück zum Zitat Dobson J, Cartmell SH, Keramane A, Haj AJE (2006b) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobiosci 5:173–177. doi:10.1109/TNB.2006.880823 CrossRef Dobson J, Cartmell SH, Keramane A, Haj AJE (2006b) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobiosci 5:173–177. doi:10.​1109/​TNB.​2006.​880823 CrossRef
Zurück zum Zitat Dobson J, Keramane A, El Haj AJ (2002) Theory and applications of magnetic force bioreactor. European Cells and Materials 4:42–44 Dobson J, Keramane A, El Haj AJ (2002) Theory and applications of magnetic force bioreactor. European Cells and Materials 4:42–44
Zurück zum Zitat Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7:5091–5101. doi:10.1021/nn4007048 CrossRef Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7:5091–5101. doi:10.​1021/​nn4007048 CrossRef
Zurück zum Zitat Dong C, Hu X, Dinu CZ (2016) Current status and perspectives in atomic force microscopy-based identification of cellular transformation. Int J Nanomedicine 11:2107–2118CrossRef Dong C, Hu X, Dinu CZ (2016) Current status and perspectives in atomic force microscopy-based identification of cellular transformation. Int J Nanomedicine 11:2107–2118CrossRef
Zurück zum Zitat Environmental and Workplace Health (2015) Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz. Consumer and Clinical Radiation Protection Bureau Environmental and Radiation Health Sciences Directorate Healthy Environments and Consumer Safety Branch Health Canada. Safety Code 6 Environmental and Workplace Health (2015) Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz. Consumer and Clinical Radiation Protection Bureau Environmental and Radiation Health Sciences Directorate Healthy Environments and Consumer Safety Branch Health Canada. Safety Code 6
Zurück zum Zitat Environmental Health Criteria 238 (2007) Extremely low frequency (ELF) fields. World Health Organization, Geneva Environmental Health Criteria 238 (2007) Extremely low frequency (ELF) fields. World Health Organization, Geneva
Zurück zum Zitat Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741. doi:10.2147/IJN.S76501 Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741. doi:10.​2147/​IJN.​S76501
Zurück zum Zitat Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL, Hogan C, Haynes CL, Garwood M, Bischof JC (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2(3):214–228. doi:10.1142/S2339547814500198 CrossRef Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL, Hogan C, Haynes CL, Garwood M, Bischof JC (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2(3):214–228. doi:10.​1142/​S233954781450019​8 CrossRef
Zurück zum Zitat Funkhouser J (2002) Reinventing pharma: theranostic revolution. Curr Drug Discovery 2:17–19 Funkhouser J (2002) Reinventing pharma: theranostic revolution. Curr Drug Discovery 2:17–19
Zurück zum Zitat Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):832–844CrossRef Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):832–844CrossRef
Zurück zum Zitat Gleich B (2014) Principles and applications of magnetic particle imaging. Springer Gleich B (2014) Principles and applications of magnetic particle imaging. Springer
Zurück zum Zitat Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(30):1114–1217. doi:10.1038/nature03808 Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(30):1114–1217. doi:10.​1038/​nature03808
Zurück zum Zitat Golovin YI, Gribanovskii SL, Golovin DY, Klyachko N, Kabanov A (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351. doi:10.1134/S1063783414070142 CrossRef Golovin YI, Gribanovskii SL, Golovin DY, Klyachko N, Kabanov A (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351. doi:10.​1134/​S106378341407014​2 CrossRef
Zurück zum Zitat Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.1016/j.jconrel.2015.09.038 CrossRef Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.​1016/​j.​jconrel.​2015.​09.​038 CrossRef
Zurück zum Zitat Golovin YI, Gribanovsky SL, Golovin DY, Zhigachev AO, Klyachko NL, Majouga AG, Sokolsky M, Kabanov AV (2017) Magnetic nanoparticles as mediators for nanomechanical actuation of biochemical systems by non-heating alternating magnetic field. J Nanopart Res xxxx Golovin YI, Gribanovsky SL, Golovin DY, Zhigachev AO, Klyachko NL, Majouga AG, Sokolsky M, Kabanov AV (2017) Magnetic nanoparticles as mediators for nanomechanical actuation of biochemical systems by non-heating alternating magnetic field. J Nanopart Res xxxx
Zurück zum Zitat Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013a) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.1134/S106378501303005X CrossRef Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013a) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.​1134/​S106378501303005​X CrossRef
Zurück zum Zitat Golovin YI, Klyachko NL, Sokolsky-Papkov M, Kabanov AV (2013b) Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low frequency magnetic fields. Bulletin of the Russian Academy of Sciences. Physics 77(11):1350–1359. doi:10.3103/S1062873813110130 Golovin YI, Klyachko NL, Sokolsky-Papkov M, Kabanov AV (2013b) Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low frequency magnetic fields. Bulletin of the Russian Academy of Sciences. Physics 77(11):1350–1359. doi:10.​3103/​S106287381311013​0
Zurück zum Zitat Golovin YI, Morgunov RB, Lopatin DV, Baskakov AA (1998) Reversible and irreversible magnetic field-induced changes in the plastic properties of NaCl crystals. Phys Solid State 40:1870–1872. doi:10.1134/1.1130675 CrossRef Golovin YI, Morgunov RB, Lopatin DV, Baskakov AA (1998) Reversible and irreversible magnetic field-induced changes in the plastic properties of NaCl crystals. Phys Solid State 40:1870–1872. doi:10.​1134/​1.​1130675 CrossRef
Zurück zum Zitat Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM (2012) X-Space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24(28):3870–3877. doi:10.1002/adma.201200221 CrossRef Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM (2012) X-Space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24(28):3870–3877. doi:10.​1002/​adma.​201200221 CrossRef
Zurück zum Zitat Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5:83–102. doi:10.1016/0306-9877(79)90063-X CrossRef Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5:83–102. doi:10.​1016/​0306-9877(79)90063-X CrossRef
Zurück zum Zitat Grzyb T, Mrowczynska L, Szczeszak A, Sniadecki Z, Runowski M, Idzikowski B, Lis S (2015) Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. J Nanopart Res 17:399. doi:10.1007/s11051-015-3191-2 CrossRef Grzyb T, Mrowczynska L, Szczeszak A, Sniadecki Z, Runowski M, Idzikowski B, Lis S (2015) Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. J Nanopart Res 17:399. doi:10.​1007/​s11051-015-3191-2 CrossRef
Zurück zum Zitat Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Scientific Reports 3:2953. doi:10.1038/srep02953 CrossRef Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Scientific Reports 3:2953. doi:10.​1038/​srep02953 CrossRef
Zurück zum Zitat Guidelines ICNIRP (2010) Guidelines for limiting exposure to time-varying electrical and magnetic fields (1 Hz to 100 kHz). Health Phys 99:818–836 Guidelines ICNIRP (2010) Guidelines for limiting exposure to time-varying electrical and magnetic fields (1 Hz to 100 kHz). Health Phys 99:818–836
Zurück zum Zitat Gupta A, Kane RS, Borca-Tasciuc D-A (2010) Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. J Appl Phys 108:064901(1)–064901(7). doi:10.1063/1.3485601 Gupta A, Kane RS, Borca-Tasciuc D-A (2010) Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. J Appl Phys 108:064901(1)–064901(7). doi:10.​1063/​1.​3485601
Zurück zum Zitat Haney MJ, Suresh P, Zhao Y, Kanmogne GD, Kadiu I, Sokolsky-Papkov M, Klyachko NL, Mosley RI, Kabanov AV, Gendelman HE, Batrakova EV (2012) Blood-borne macrophage-neural cell interactions hitchhike endosome networks for cell-based nanozyme brain delivery. Nanomedicine (London) 7(8):815–833. doi:10.2217/nnm.11.156 CrossRef Haney MJ, Suresh P, Zhao Y, Kanmogne GD, Kadiu I, Sokolsky-Papkov M, Klyachko NL, Mosley RI, Kabanov AV, Gendelman HE, Batrakova EV (2012) Blood-borne macrophage-neural cell interactions hitchhike endosome networks for cell-based nanozyme brain delivery. Nanomedicine (London) 7(8):815–833. doi:10.​2217/​nnm.​11.​156 CrossRef
Zurück zum Zitat Hanus J, Ullrich M, Dohnal J, Singh M, Stepanek F (2013) Remotely controlled diffusion from magnetic liposome microgels. Langmuir 29:4381–4387. doi:10.1021/la4000318 CrossRef Hanus J, Ullrich M, Dohnal J, Singh M, Stepanek F (2013) Remotely controlled diffusion from magnetic liposome microgels. Langmuir 29:4381–4387. doi:10.​1021/​la4000318 CrossRef
Zurück zum Zitat Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–843. doi:10.7150/thno.9199 CrossRef Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–843. doi:10.​7150/​thno.​9199 CrossRef
Zurück zum Zitat He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang VC (2013) Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res 30:2445–2458. doi:10.1007/s11095-013-0982-y CrossRef He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang VC (2013) Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res 30:2445–2458. doi:10.​1007/​s11095-013-0982-y CrossRef
Zurück zum Zitat Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844. doi:10.1038/nature06410 CrossRef Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844. doi:10.​1038/​nature06410 CrossRef
Zurück zum Zitat Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H (eds) Magnetism in medicine: a handbook, Second edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 550–570. doi:10.1002/9783527610174.ch4f Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H (eds) Magnetism in medicine: a handbook, Second edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 550–570. doi:10.​1002/​9783527610174.​ch4f
Zurück zum Zitat Hergt R, Andrä W, d'Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754CrossRef Hergt R, Andrä W, d'Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754CrossRef
Zurück zum Zitat Herschlag D, Natarajan A (2013) Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Biochemistry 52:2050–2067. doi:10.1021/bi4000113 CrossRef Herschlag D, Natarajan A (2013) Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Biochemistry 52:2050–2067. doi:10.​1021/​bi4000113 CrossRef
Zurück zum Zitat Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 6:11553–11573. doi:10.1039/c4nr03482a CrossRef Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 6:11553–11573. doi:10.​1039/​c4nr03482a CrossRef
Zurück zum Zitat Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657. doi:10.1021/nl9018935 CrossRef Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657. doi:10.​1021/​nl9018935 CrossRef
Zurück zum Zitat Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400. doi:10.1021/nl200494t CrossRef Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400. doi:10.​1021/​nl200494t CrossRef
Zurück zum Zitat Hore PJ (2012) Are biochemical reactions affected by weak magnetic fields? Proc Nat Acad Sci 109:1357–1358CrossRef Hore PJ (2012) Are biochemical reactions affected by weak magnetic fields? Proc Nat Acad Sci 109:1357–1358CrossRef
Zurück zum Zitat Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine: Nanotechnology Biology and Medicine 10(1):45–55. doi:10.1016/j.nano.2013.06.014 Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine: Nanotechnology Biology and Medicine 10(1):45–55. doi:10.​1016/​j.​nano.​2013.​06.​014
Zurück zum Zitat Hu B, El Haj AJ, Dobson J (2013) Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci 14:19276–19293. doi:10.3390/ijms140919276 CrossRef Hu B, El Haj AJ, Dobson J (2013) Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci 14:19276–19293. doi:10.​3390/​ijms140919276 CrossRef
Zurück zum Zitat Hu SH, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132:7234–7237. doi:10.1021/ja102489q CrossRef Hu SH, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132:7234–7237. doi:10.​1021/​ja102489q CrossRef
Zurück zum Zitat Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606. doi:10.1038/nnano.2010.125 CrossRef Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606. doi:10.​1038/​nnano.​2010.​125 CrossRef
Zurück zum Zitat ICEMS Monograph (2010) Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Giuliani L, Soffritti M (eds). Eur. J. Oncol. Library 5 ICEMS Monograph (2010) Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Giuliani L, Soffritti M (eds). Eur. J. Oncol. Library 5
Zurück zum Zitat ICNIRP Guidelines (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74:494–522 ICNIRP Guidelines (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74:494–522
Zurück zum Zitat ICNIRP Statement (2004) Medical magnetic resonance (MR) procedure: protection of patients. Health Phys 87(2):197–216CrossRef ICNIRP Statement (2004) Medical magnetic resonance (MR) procedure: protection of patients. Health Phys 87(2):197–216CrossRef
Zurück zum Zitat Ikai A (2008) The world of nano-biomechanics. Mechanical imaging and measurement by atomic force microscopy. Elsevier, Amsterdam Ikai A (2008) The world of nano-biomechanics. Mechanical imaging and measurement by atomic force microscopy. Elsevier, Amsterdam
Zurück zum Zitat Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 55:320–328. doi:10.1007/s00262-005-0049-y CrossRef Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 55:320–328. doi:10.​1007/​s00262-005-0049-y CrossRef
Zurück zum Zitat James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447. doi:10.1039/C1CS15171A CrossRef James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447. doi:10.​1039/​C1CS15171A CrossRef
Zurück zum Zitat Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J of Magnetism and Magnetic Materials 194:185–196. doi:10.1016/s0304-8853(98)00558-7 CrossRef Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J of Magnetism and Magnetic Materials 194:185–196. doi:10.​1016/​s0304-8853(98)00558-7 CrossRef
Zurück zum Zitat Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (2009) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperth 25:499–511. doi:10.3109/02656730903287790 CrossRef Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (2009) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperth 25:499–511. doi:10.​3109/​0265673090328779​0 CrossRef
Zurück zum Zitat Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR (2016) Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J of Nanomedicine 11:1349–1366. doi:10.2147/IJN.S95253 Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR (2016) Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J of Nanomedicine 11:1349–1366. doi:10.​2147/​IJN.​S95253
Zurück zum Zitat Kanczler JM, Sura HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250. doi:10.1089/ten.TEA.2009.0638 CrossRef Kanczler JM, Sura HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250. doi:10.​1089/​ten.​TEA.​2009.​0638 CrossRef
Zurück zum Zitat Kato M (ed) (2006) Electromagnetics in biology. Springer Kato M (ed) (2006) Electromagnetics in biology. Springer
Zurück zum Zitat Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, Ruiz A, Yndart A, Atluri V, El-Hage N, Khalili K, Nair M (2016) Magnetically guided central nervous system delivery and toxicity evaluation of magnetoelectric nanocarriers. Scientific Reports 6:25309. doi:10.1038/srep25309 CrossRef Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, Ruiz A, Yndart A, Atluri V, El-Hage N, Khalili K, Nair M (2016) Magnetically guided central nervous system delivery and toxicity evaluation of magnetoelectric nanocarriers. Scientific Reports 6:25309. doi:10.​1038/​srep25309 CrossRef
Zurück zum Zitat Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 100:054305. doi:10.1063/1.2335783 CrossRef Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 100:054305. doi:10.​1063/​1.​2335783 CrossRef
Zurück zum Zitat Kim DH, Karavayev P, Rozhkova EA, Pearson J, Yefremenko V, Bader SD, Novosad V (2011) Mechanoresponsive system based on sub-micron chitosan-functionalized ferromagnetic disks. J Mater Chem 21:8422–8426. doi:10.1039/C1JM10272A CrossRef Kim DH, Karavayev P, Rozhkova EA, Pearson J, Yefremenko V, Bader SD, Novosad V (2011) Mechanoresponsive system based on sub-micron chitosan-functionalized ferromagnetic disks. J Mater Chem 21:8422–8426. doi:10.​1039/​C1JM10272A CrossRef
Zurück zum Zitat Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.1038/nmat2591 CrossRef Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.​1038/​nmat2591 CrossRef
Zurück zum Zitat Kim DH, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA (2013a) Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir 29:7425–7432. doi:10.1021/la3044158 CrossRef Kim DH, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA (2013a) Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir 29:7425–7432. doi:10.​1021/​la3044158 CrossRef
Zurück zum Zitat Klibanov AM (1979) Enzyme stabilization by immobilization. Anal Biochem 93:1–25CrossRef Klibanov AM (1979) Enzyme stabilization by immobilization. Anal Biochem 93:1–25CrossRef
Zurück zum Zitat Klibanov AM, Samokhin GP, Martinek K, Berezin IV (1976) Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action. Biochim. Biophys Acta 438:1–12 Klibanov AM, Samokhin GP, Martinek K, Berezin IV (1976) Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action. Biochim. Biophys Acta 438:1–12
Zurück zum Zitat Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Edit 51:12016–12019. doi:10.1002/anie.201205905 CrossRef Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Edit 51:12016–12019. doi:10.​1002/​anie.​201205905 CrossRef
Zurück zum Zitat Knopp T, Buzug TM (2012) Magnetic particle imaging. An introduction to imaging principles and scanner instrumentation. Springer Knopp T, Buzug TM (2012) Magnetic particle imaging. An introduction to imaging principles and scanner instrumentation. Springer
Zurück zum Zitat Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937. doi:10.1021/cr500314d CrossRef Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937. doi:10.​1021/​cr500314d CrossRef
Zurück zum Zitat Lee HC, Hong MN, Jung SH, Kim BC, Suh YJ, Ko YG, Lee YS, Lee BY, Cho YG, Myung SH, Lee JS (2015a) Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics 36:506–516. doi:10.1002/bem.21932 CrossRef Lee HC, Hong MN, Jung SH, Kim BC, Suh YJ, Ko YG, Lee YS, Lee BY, Cho YG, Myung SH, Lee JS (2015a) Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics 36:506–516. doi:10.​1002/​bem.​21932 CrossRef
Zurück zum Zitat Leulmi S, Chauchet X, Morcrette M, Ortiz G, Joisten H, Sabon P, Livache T, Hou Y, Carrière M, Lequiena S, Dieny B (2015) Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7:15904–15914. doi:10.1039/c5nr03518j CrossRef Leulmi S, Chauchet X, Morcrette M, Ortiz G, Joisten H, Sabon P, Livache T, Hou Y, Carrière M, Lequiena S, Dieny B (2015) Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7:15904–15914. doi:10.​1039/​c5nr03518j CrossRef
Zurück zum Zitat Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomedicine 10:3315–3328. doi:10.2147/IJN.S68719 CrossRef Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomedicine 10:3315–3328. doi:10.​2147/​IJN.​S68719 CrossRef
Zurück zum Zitat Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394. doi:10.1021/cr300213b CrossRef Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394. doi:10.​1021/​cr300213b CrossRef
Zurück zum Zitat Lin X, Quoc BN, Ulbricht M (2016) Magnetoresponsive polyethersulfone-based iron oxide cum hydrogel mixed matrix composite membranes for switchable molecular sieving. ACS Appl Mater Interfaces 8(42):29001–29014. doi:10.1021/acsami.6b09369 CrossRef Lin X, Quoc BN, Ulbricht M (2016) Magnetoresponsive polyethersulfone-based iron oxide cum hydrogel mixed matrix composite membranes for switchable molecular sieving. ACS Appl Mater Interfaces 8(42):29001–29014. doi:10.​1021/​acsami.​6b09369 CrossRef
Zurück zum Zitat Ling-Yun Z, Jia-Yi L, Wei-Wei O, Dan-Ye L, Li L, Li-Ya L, Jin-Tian T (2013) Magnetic-mediated hyperthermia for cancer treatment: research progress and clinical trials. Chin Phys B 22:108104–1–108104-14. doi:10.1088/1674-1056/22/10/108104 Ling-Yun Z, Jia-Yi L, Wei-Wei O, Dan-Ye L, Li L, Li-Ya L, Jin-Tian T (2013) Magnetic-mediated hyperthermia for cancer treatment: research progress and clinical trials. Chin Phys B 22:108104–1–108104-14. doi:10.​1088/​1674-1056/​22/​10/​108104
Zurück zum Zitat Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM (2005) Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21:2042–2050. doi:10.1021/la047629q CrossRef Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM (2005) Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21:2042–2050. doi:10.​1021/​la047629q CrossRef
Zurück zum Zitat Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338. doi:10.1021/cr2002596 CrossRef Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338. doi:10.​1021/​cr2002596 CrossRef
Zurück zum Zitat Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324. doi:10.1007/s11060-010-0389-0 CrossRef Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324. doi:10.​1007/​s11060-010-0389-0 CrossRef
Zurück zum Zitat Majouga A, Sokolsky-Papkov M, Kuznetsov A, Lebedev D, Efremova M, Beloglazkina E, Rudakovskaya P, Veselov M, Zyka N, Golovin Y, Klyachko N, Kabanov A (2015) Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloids Surf B: Biointerfaces 125:104–109. doi:10.1016/j.colsurfb.2014.11.012 CrossRef Majouga A, Sokolsky-Papkov M, Kuznetsov A, Lebedev D, Efremova M, Beloglazkina E, Rudakovskaya P, Veselov M, Zyka N, Golovin Y, Klyachko N, Kabanov A (2015) Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloids Surf B: Biointerfaces 125:104–109. doi:10.​1016/​j.​colsurfb.​2014.​11.​012 CrossRef
Zurück zum Zitat Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9:e85835. doi:10.1371/journal.pone.0085835 CrossRef Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9:e85835. doi:10.​1371/​journal.​pone.​0085835 CrossRef
Zurück zum Zitat Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3:36–40. doi:10.1038/nnano.2007.418 CrossRef Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3:36–40. doi:10.​1038/​nnano.​2007.​418 CrossRef
Zurück zum Zitat Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv Funct Mater 22:3737–3744. doi:10.1002/adfm.201200307 CrossRef Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv Funct Mater 22:3737–3744. doi:10.​1002/​adfm.​201200307 CrossRef
Zurück zum Zitat Master AM, Williams PN, Pothayee Nik, Pothayee Nip, Zhang R, Vishwasrao HM, Golovin YI, Riffle JS, Sokolsky M, Kabanov AV (2016) Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption. Scientific Reports 6:33560. doi:10.1038/srep33560 Master AM, Williams PN, Pothayee Nik, Pothayee Nip, Zhang R, Vishwasrao HM, Golovin YI, Riffle JS, Sokolsky M, Kabanov AV (2016) Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption. Scientific Reports 6:33560. doi:10.​1038/​srep33560
Zurück zum Zitat Min W, English BP, Luo J, Cherayil BJ, Kou SC, Xie XS (2005) Fluctuating enzymes: lessons from single-molecule studies. Acc Chem Res 38:923–931. doi:10.1021/ar040133f CrossRef Min W, English BP, Luo J, Cherayil BJ, Kou SC, Xie XS (2005) Fluctuating enzymes: lessons from single-molecule studies. Acc Chem Res 38:923–931. doi:10.​1021/​ar040133f CrossRef
Zurück zum Zitat Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R, Maekawa T (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782. doi:10.1016/j.bbrc.2010.02.081 CrossRef Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R, Maekawa T (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782. doi:10.​1016/​j.​bbrc.​2010.​02.​081 CrossRef
Zurück zum Zitat Mohapatra J, Nigam S, Gupta J, Mitra A, Aslam M, Bahadur D (2015) Enhancement of magnetic heating efficiency in size controlled MFe2O4 (M = Mn, Fe, Co and Ni) nanoassemblies. RSC Adv 5:14311–14321. doi:10.1039/c4ra13079k CrossRef Mohapatra J, Nigam S, Gupta J, Mitra A, Aslam M, Bahadur D (2015) Enhancement of magnetic heating efficiency in size controlled MFe2O4 (M = Mn, Fe, Co and Ni) nanoassemblies. RSC Adv 5:14311–14321. doi:10.​1039/​c4ra13079k CrossRef
Zurück zum Zitat Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. doi:10.1039/B402025A CrossRef Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. doi:10.​1039/​B402025A CrossRef
Zurück zum Zitat Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677. doi:10.7150/thno.8698 CrossRef Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677. doi:10.​7150/​thno.​8698 CrossRef
Zurück zum Zitat Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci U S A 105:6626–6631. doi:10.1073/pnas.0711704105 CrossRef Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci U S A 105:6626–6631. doi:10.​1073/​pnas.​0711704105 CrossRef
Zurück zum Zitat Nacev A, Kim SH, Rodriguez-Canales J, Tangrea MA, Shapiro B, Emmert-Buck MR (2011) A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens. Int J of Nanomedicine 6:2907–2923. doi:10.2147/IJN.S23724 CrossRef Nacev A, Kim SH, Rodriguez-Canales J, Tangrea MA, Shapiro B, Emmert-Buck MR (2011) A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens. Int J of Nanomedicine 6:2907–2923. doi:10.​2147/​IJN.​S23724 CrossRef
Zurück zum Zitat Nacev A, Probst R, Kim SH, Komaee A, Sarvar A, Lee R, Depireux D, Emmert-Buck M, Shapiro B (2012) Towards control of magnetic fluids in patients. Directing therapeutic nanoparticles to desease location. IEEE Control Syst Mag 32(3):32–74. doi:10.1109/MCS.2012.2189052 CrossRef Nacev A, Probst R, Kim SH, Komaee A, Sarvar A, Lee R, Depireux D, Emmert-Buck M, Shapiro B (2012) Towards control of magnetic fluids in patients. Directing therapeutic nanoparticles to desease location. IEEE Control Syst Mag 32(3):32–74. doi:10.​1109/​MCS.​2012.​2189052 CrossRef
Zurück zum Zitat Nagakura S, Hayashi H, Azumi T (1998) Dynamic spin chemistry: magnetic controls and spin dynamics of chemical reactions. Wiley, New-York Nagakura S, Hayashi H, Azumi T (1998) Dynamic spin chemistry: magnetic controls and spin dynamics of chemical reactions. Wiley, New-York
Zurück zum Zitat Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707. doi:10.1038/ncomms2717 CrossRef Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707. doi:10.​1038/​ncomms2717 CrossRef
Zurück zum Zitat Najafishirtari S, Kokumai TM, Marras S, Destro P, Prato M, Scarpellini A, Brescia R, Lak A, Pellegrino T, Zanchet D, Manna L, Colombo M (2016) Dumbbell-like Au0.5Cu0.5@Fe3O4 nanocrystals: synthesis, characterization and catalytic activity in CO oxidation. ACS Appl Mater Interfaces 8(42):28624–28632. doi:10.1021/acsami.6b09813 CrossRef Najafishirtari S, Kokumai TM, Marras S, Destro P, Prato M, Scarpellini A, Brescia R, Lak A, Pellegrino T, Zanchet D, Manna L, Colombo M (2016) Dumbbell-like Au0.5Cu0.5@Fe3O4 nanocrystals: synthesis, characterization and catalytic activity in CO oxidation. ACS Appl Mater Interfaces 8(42):28624–28632. doi:10.​1021/​acsami.​6b09813 CrossRef
Zurück zum Zitat Nappini S, Bombelli FB, Bonini M, Norden B, Baglioni P (2010) Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter 6:154–162. doi:10.1039/B915651H CrossRef Nappini S, Bombelli FB, Bonini M, Norden B, Baglioni P (2010) Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter 6:154–162. doi:10.​1039/​B915651H CrossRef
Zurück zum Zitat Nappini S, Bonini M, Bombelli FB, Pineider F, Sangregorio C, Baglioni P, Norden B (2011a) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter 7:1025–1037. doi:10.1039/C0SM00789G CrossRef Nappini S, Bonini M, Bombelli FB, Pineider F, Sangregorio C, Baglioni P, Norden B (2011a) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter 7:1025–1037. doi:10.​1039/​C0SM00789G CrossRef
Zurück zum Zitat Nappini S, Bonini M, Ridi F, Baglioni P (2011b) Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter 7:4801–4811. doi:10.1039/C0SM01264E CrossRef Nappini S, Bonini M, Ridi F, Baglioni P (2011b) Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter 7:4801–4811. doi:10.​1039/​C0SM01264E CrossRef
Zurück zum Zitat National Research Council (US) (1997) Possible health effects of exposure to residential electric and magnetic fields. National Academy, Washington (DC) National Research Council (US) (1997) Possible health effects of exposure to residential electric and magnetic fields. National Academy, Washington (DC)
Zurück zum Zitat Navarro EA, Gomez-Perretta C, Montes F (2016) Low intensity magnetic field influences short-term memory: a study in a group of healthy students. Bioelectromagnetics 37:37–48. doi:10.1002/bem.21944 CrossRef Navarro EA, Gomez-Perretta C, Montes F (2016) Low intensity magnetic field influences short-term memory: a study in a group of healthy students. Bioelectromagnetics 37:37–48. doi:10.​1002/​bem.​21944 CrossRef
Zurück zum Zitat Neshasteh-Riz A, Rahdani R, Mostaar A (2014) Evaluation of the combined effects of hyperthermia, cobalt-60 gamma rays and IUdR on cultured glioblastoma spheroid cells and dosimetry using TLD-100. Cell Journal 16:335–342 Neshasteh-Riz A, Rahdani R, Mostaar A (2014) Evaluation of the combined effects of hyperthermia, cobalt-60 gamma rays and IUdR on cultured glioblastoma spheroid cells and dosimetry using TLD-100. Cell Journal 16:335–342
Zurück zum Zitat Noy A (2008) Handbook of molecular force spectroscopy. Springer, New YorkCrossRef Noy A (2008) Handbook of molecular force spectroscopy. Springer, New YorkCrossRef
Zurück zum Zitat NTK T (ed) (2012) Magnetic nanoparticles. From fabrication to clinical application. CRC, Boca Raton NTK T (ed) (2012) Magnetic nanoparticles. From fabrication to clinical application. CRC, Boca Raton
Zurück zum Zitat Oberhauser AF (2013) Single-molecule studies of proteins. Springer, New YorkCrossRef Oberhauser AF (2013) Single-molecule studies of proteins. Springer, New YorkCrossRef
Zurück zum Zitat Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114. doi:10.2147/IJN.S70488 CrossRef Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114. doi:10.​2147/​IJN.​S70488 CrossRef
Zurück zum Zitat Peiris PM, Schmidt E, Calabrese M, Karathanasis E (2011) Assembly of linear nano-chains from iron oxide nanospheres with asymmetric surface chemistry. PLoS One 6(1): e15927-(1–9). doi:10.1371/journal.pone.0015927 Peiris PM, Schmidt E, Calabrese M, Karathanasis E (2011) Assembly of linear nano-chains from iron oxide nanospheres with asymmetric surface chemistry. PLoS One 6(1): e15927-(1–9). doi:10.​1371/​journal.​pone.​0015927
Zurück zum Zitat Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis K (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6(5):4157–4168. doi:10.1021/nn300652p CrossRef Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis K (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6(5):4157–4168. doi:10.​1021/​nn300652p CrossRef
Zurück zum Zitat Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2:041302. doi:10.1063/1.4935688 CrossRef Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2:041302. doi:10.​1063/​1.​4935688 CrossRef
Zurück zum Zitat Pilla AA (2013) Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagnetic Biology and Medicine 32:123–136CrossRef Pilla AA (2013) Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagnetic Biology and Medicine 32:123–136CrossRef
Zurück zum Zitat Polk C, Postow E (eds) (1995) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton Polk C, Postow E (eds) (1995) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton
Zurück zum Zitat Polo-Corrales L, Rinaldi C (2012) Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. J Applied Phys 111:07B334. doi:10.1063/1.3680532 CrossRef Polo-Corrales L, Rinaldi C (2012) Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. J Applied Phys 111:07B334. doi:10.​1063/​1.​3680532 CrossRef
Zurück zum Zitat Popa I, Kosuri P, Alegre-Cebollada J, Garcia-Manyes S, Fernandez JM (2013) Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat Protoc 8:1261–1276. doi:10.1038/nprot.2013.056 CrossRef Popa I, Kosuri P, Alegre-Cebollada J, Garcia-Manyes S, Fernandez JM (2013) Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat Protoc 8:1261–1276. doi:10.​1038/​nprot.​2013.​056 CrossRef
Zurück zum Zitat Qu Y, Li J, Ren J, Leng J, Linc C, Shi D (2014) Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. Nanoscale. 6:12408–12413. doi:10.1039/c4nr03384a CrossRef Qu Y, Li J, Ren J, Leng J, Linc C, Shi D (2014) Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. Nanoscale. 6:12408–12413. doi:10.​1039/​c4nr03384a CrossRef
Zurück zum Zitat Rafique MY, Pan L, Javed Q, Iqbal MZ, Yang L (2012) Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method. J Nanopart Res 14:1–12. doi:10.1007/s11051-012-1189-6 CrossRef Rafique MY, Pan L, Javed Q, Iqbal MZ, Yang L (2012) Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method. J Nanopart Res 14:1–12. doi:10.​1007/​s11051-012-1189-6 CrossRef
Zurück zum Zitat Reddy L, Areas JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. doi:10.1021/cr300068p CrossRef Reddy L, Areas JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. doi:10.​1021/​cr300068p CrossRef
Zurück zum Zitat Reimhult E, Amstad E (2014) Stabilization and characterization of iron oxide superparamagnetic core-shell nanoparticles for biomedical applications. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 355–387CrossRef Reimhult E, Amstad E (2014) Stabilization and characterization of iron oxide superparamagnetic core-shell nanoparticles for biomedical applications. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 355–387CrossRef
Zurück zum Zitat Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ (2012) Disease detection and management via single nanopore-based sensors. Chem Rev 112:6431–6451. doi:10.1021/cr300381m CrossRef Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ (2012) Disease detection and management via single nanopore-based sensors. Chem Rev 112:6431–6451. doi:10.​1021/​cr300381m CrossRef
Zurück zum Zitat Rios C, Longo J, Zahouani S, Garnier T, Vogt C, Reisch A, Senger B, Boulmedais F, Hemmerle J, Benmlih K, Frisch B, Schaaf P, Jierry L, Lavalle P (2015) A new biomimetic route to engineer enzymatically active mechano-responsive materials. Chem Commun 51:5622–5625. doi:10.1039/C5CC00329F CrossRef Rios C, Longo J, Zahouani S, Garnier T, Vogt C, Reisch A, Senger B, Boulmedais F, Hemmerle J, Benmlih K, Frisch B, Schaaf P, Jierry L, Lavalle P (2015) A new biomimetic route to engineer enzymatically active mechano-responsive materials. Chem Commun 51:5622–5625. doi:10.​1039/​C5CC00329F CrossRef
Zurück zum Zitat Rojas-Pereza A, Diaz-Diestra D, Frias-Flores CB, Beltran-Huarac J, Dasc KC, Weiner BR, Morell G, Diaz-Vazquez LM (2015a) Catalytic effect of ultrananocrystalline Fe3O4 on algal bio-crude production via HTL process. Nanoscale 7:17664–17671. doi:10.1039/C5NR04404A CrossRef Rojas-Pereza A, Diaz-Diestra D, Frias-Flores CB, Beltran-Huarac J, Dasc KC, Weiner BR, Morell G, Diaz-Vazquez LM (2015a) Catalytic effect of ultrananocrystalline Fe3O4 on algal bio-crude production via HTL process. Nanoscale 7:17664–17671. doi:10.​1039/​C5NR04404A CrossRef
Zurück zum Zitat Rozhkova EA, Novosad V, Kim DH, Pearson J, Divan R, Rajh T, Bader SD (2009) Ferromagnetic microdisks as carriers for biomedical applications. J Appl Phys 105:07B306. doi:10.1063/1.3061685 CrossRef Rozhkova EA, Novosad V, Kim DH, Pearson J, Divan R, Rajh T, Bader SD (2009) Ferromagnetic microdisks as carriers for biomedical applications. J Appl Phys 105:07B306. doi:10.​1063/​1.​3061685 CrossRef
Zurück zum Zitat Runowski M, Dabrowska K, Grzyb T, Miernikiewicz P, Lis S (2013) Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. J Nanopart Res 15:2068. doi:10.1007/s11051-013-2068-5 CrossRef Runowski M, Dabrowska K, Grzyb T, Miernikiewicz P, Lis S (2013) Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. J Nanopart Res 15:2068. doi:10.​1007/​s11051-013-2068-5 CrossRef
Zurück zum Zitat Ruta S. R, Chantrell R, Hovorka O (2015) Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sientific Reports 5: 9090-(1–7). doi: 10.1038/srep09090 Ruta S. R, Chantrell R, Hovorka O (2015) Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sientific Reports 5: 9090-(1–7). doi: 10.​1038/​srep09090
Zurück zum Zitat Salikhov KM, Molin YN, Sagdeev RZ, Buchachenko AL (1984) Spin polarization and magnetic effects in radical reaction. Elsevier, Amsterdam Salikhov KM, Molin YN, Sagdeev RZ, Buchachenko AL (1984) Spin polarization and magnetic effects in radical reaction. Elsevier, Amsterdam
Zurück zum Zitat Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A, Miraux S, Thiaudiere E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux O (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140. doi:10.1021/nn102762f CrossRef Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A, Miraux S, Thiaudiere E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux O (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140. doi:10.​1021/​nn102762f CrossRef
Zurück zum Zitat Saville SL, Qi B, Baker J, Stone R, Camley RE, Livesey KL, Ye L, Crawford TM, Mefford TO (2014) The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. J of Colloid and Interface Science 424:141–151 doi.org/10.1016/j.jcis.2014.03.007 CrossRef Saville SL, Qi B, Baker J, Stone R, Camley RE, Livesey KL, Ye L, Crawford TM, Mefford TO (2014) The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. J of Colloid and Interface Science 424:141–151 doi.​org/​10.​1016/​j.​jcis.​2014.​03.​007 CrossRef
Zurück zum Zitat Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V (2014b) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91. doi:10.1016/j.jconrel.2014.07.059 CrossRef Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V (2014b) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91. doi:10.​1016/​j.​jconrel.​2014.​07.​059 CrossRef
Zurück zum Zitat Seeram E (2015) Computer tomography: principles, clinical application, and quality control. 4th Ed. Elsevier Seeram E (2015) Computer tomography: principles, clinical application, and quality control. 4th Ed. Elsevier
Zurück zum Zitat Semkina AS, Abakumov MA, Abakumov AM, Nukolova NV, Chekhonin VP (2016) Relationship between the size of magnetic nanoparticles and efficiency of MRT imaging of cerebral glioma in rats. Bull Exp Biol Med 161(2):292–295. doi:10.1007/s10517-016-3398-y CrossRef Semkina AS, Abakumov MA, Abakumov AM, Nukolova NV, Chekhonin VP (2016) Relationship between the size of magnetic nanoparticles and efficiency of MRT imaging of cerebral glioma in rats. Bull Exp Biol Med 161(2):292–295. doi:10.​1007/​s10517-016-3398-y CrossRef
Zurück zum Zitat Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934. doi:10.1021/jp410717m CrossRef Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934. doi:10.​1021/​jp410717m CrossRef
Zurück zum Zitat Shapiro B, Kulkarni S, Nacev A, Muro S, Stepanov PY, Weinberg IN (2015) Open challenges in magnetic drug targeting. WIREs Nanomed Nanobiotechnol 7:446–457. doi:10.1002/wnan.1311 CrossRef Shapiro B, Kulkarni S, Nacev A, Muro S, Stepanov PY, Weinberg IN (2015) Open challenges in magnetic drug targeting. WIREs Nanomed Nanobiotechnol 7:446–457. doi:10.​1002/​wnan.​1311 CrossRef
Zurück zum Zitat Sharifabad ME, Mercer T, Sen T (2015) The fabrication and characterization of stable core-shell superparamagnetic nanocomposites for potential application in drug delivery. J Appl Phys 117:17D139. doi:10.1063/1.4917264 CrossRef Sharifabad ME, Mercer T, Sen T (2015) The fabrication and characterization of stable core-shell superparamagnetic nanocomposites for potential application in drug delivery. J Appl Phys 117:17D139. doi:10.​1063/​1.​4917264 CrossRef
Zurück zum Zitat Sharma VK, Alipour A, Soran-Erdem Z, Aykut ZG, Demir HV (2015) Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents. Nanoscale 7:10519–10526. doi:10.1039/c5nr00752f CrossRef Sharma VK, Alipour A, Soran-Erdem Z, Aykut ZG, Demir HV (2015) Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents. Nanoscale 7:10519–10526. doi:10.​1039/​c5nr00752f CrossRef
Zurück zum Zitat Shen S, Gu T, Mao D, Xiao X, Yuan P, Yu M, Xia L, Ji Q, Meng L, Song W, Yu C, Lu G (2012) Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem Mater 24:230–235. doi:10.1021/cm203434k CrossRef Shen S, Gu T, Mao D, Xiao X, Yuan P, Yu M, Xia L, Ji Q, Meng L, Song W, Yu C, Lu G (2012) Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem Mater 24:230–235. doi:10.​1021/​cm203434k CrossRef
Zurück zum Zitat Singh S, Kapoor N (2014) Health implications of electromagnetic fields, mechanisms of action, and research needs. Advances in Biology 2014: Article ID 198609. doi: 10.1155/2014/198609 Singh S, Kapoor N (2014) Health implications of electromagnetic fields, mechanisms of action, and research needs. Advances in Biology 2014: Article ID 198609. doi: 10.​1155/​2014/​198609
Zurück zum Zitat Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoffm P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F (2015) Effects of PVA coated nanoparticles on human immune cells. Int J Nanomedicine 10:3429–3445. doi:10.2147/IJN.S75936 CrossRef Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoffm P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F (2015) Effects of PVA coated nanoparticles on human immune cells. Int J Nanomedicine 10:3429–3445. doi:10.​2147/​IJN.​S75936 CrossRef
Zurück zum Zitat Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F (2016) Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomedicine 11:5883–5896. doi:10.2147/IJN.S110579 CrossRef Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F (2016) Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomedicine 11:5883–5896. doi:10.​2147/​IJN.​S110579 CrossRef
Zurück zum Zitat Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080CrossRef Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080CrossRef
Zurück zum Zitat Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625. doi:10.1021/ja1022267 CrossRef Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625. doi:10.​1021/​ja1022267 CrossRef
Zurück zum Zitat Thorat ND, Bohara RA, Malgras V, Tofail SAM, Ahamad T, Alshehri SM, Wu KCW, Yamauchi Y (2016a) Multimodal superparamagnetic nanoparticles with unusually enhanced specific absorption rate for synergetic cancer therapeutics and magnetic resonance imaging. ACS Appl Mater Interfaces 8(23):14656–14664. doi:10.1021/acsami.6b02616 CrossRef Thorat ND, Bohara RA, Malgras V, Tofail SAM, Ahamad T, Alshehri SM, Wu KCW, Yamauchi Y (2016a) Multimodal superparamagnetic nanoparticles with unusually enhanced specific absorption rate for synergetic cancer therapeutics and magnetic resonance imaging. ACS Appl Mater Interfaces 8(23):14656–14664. doi:10.​1021/​acsami.​6b02616 CrossRef
Zurück zum Zitat Thorat ND, Bohara RA, Tofail SAM, Alothman ZA, Shiddiky MJA, Hossain MSA, Yamauchi Y, Wu KCW (2016b) Superparamagnetic gadolinium ferrite nanoparticles with controllable curie temperature—cancer theranostics for MR-imaging-guided magneto-chemotherapy. Eur J Inorg Chem 2016(28):4586–4597. doi:10.1002/ejic.201600706 CrossRef Thorat ND, Bohara RA, Tofail SAM, Alothman ZA, Shiddiky MJA, Hossain MSA, Yamauchi Y, Wu KCW (2016b) Superparamagnetic gadolinium ferrite nanoparticles with controllable curie temperature—cancer theranostics for MR-imaging-guided magneto-chemotherapy. Eur J Inorg Chem 2016(28):4586–4597. doi:10.​1002/​ejic.​201600706 CrossRef
Zurück zum Zitat Thorat ND, Shinde KP, Pawar SH, Barick KC, Bettyc CA, Ningthoujamc RS (2012) Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans 41:3060–3071. doi:10.1039/c2dt11835a CrossRef Thorat ND, Shinde KP, Pawar SH, Barick KC, Bettyc CA, Ningthoujamc RS (2012) Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans 41:3060–3071. doi:10.​1039/​c2dt11835a CrossRef
Zurück zum Zitat Thorat ND, Lemine OM, Bohara RA, Omri K, Mir LE, Tofail SAM (2016c) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18:21331–21339. doi:10.1039/C6CP03430F CrossRef Thorat ND, Lemine OM, Bohara RA, Omri K, Mir LE, Tofail SAM (2016c) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18:21331–21339. doi:10.​1039/​C6CP03430F CrossRef
Zurück zum Zitat Thorat ND, Otari SV, Patil RM, Bohara RA, Yadav HM, Koli VB, Chaurasia AK, Ningthoujam RS (2014) Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Dalton Trans 43(46):17343–17351. doi:10.1039/C4DT02293A CrossRef Thorat ND, Otari SV, Patil RM, Bohara RA, Yadav HM, Koli VB, Chaurasia AK, Ningthoujam RS (2014) Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Dalton Trans 43(46):17343–17351. doi:10.​1039/​C4DT02293A CrossRef
Zurück zum Zitat Uchiyama S, Matsumura Y, de Silva AP, Iwai K (2003) Fluorescent molecular thermometers based on polymers showing temperature induced phase transitions and labeled with polarity-responsive benzofurazans. Anal Chem 75:5926–5935. doi:10.1021/ac0346914 CrossRef Uchiyama S, Matsumura Y, de Silva AP, Iwai K (2003) Fluorescent molecular thermometers based on polymers showing temperature induced phase transitions and labeled with polarity-responsive benzofurazans. Anal Chem 75:5926–5935. doi:10.​1021/​ac0346914 CrossRef
Zurück zum Zitat Urries I, Muñoz C, Gomez L, Marquina C, Sebastian V, Arruebo M, Santamaria J (2012) Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale 6:9230–9240. doi:10.1039/c4nr01588f CrossRef Urries I, Muñoz C, Gomez L, Marquina C, Sebastian V, Arruebo M, Santamaria J (2012) Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale 6:9230–9240. doi:10.​1039/​c4nr01588f CrossRef
Zurück zum Zitat Vinhas R, Cordeiro M, Carlos FF, Mendo S, Fernandes AR, Figueiredo S, Baptista PV (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors in Disease Diagnosis 4:11–23. doi:10.2147/ndd.s60285 Vinhas R, Cordeiro M, Carlos FF, Mendo S, Fernandes AR, Figueiredo S, Baptista PV (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors in Disease Diagnosis 4:11–23. doi:10.​2147/​ndd.​s60285
Zurück zum Zitat Vitol EA, Novosad V, Rozhkova EA (2012b) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (Lond) 7:1611–1624. doi:10.2217/nnm.12.133 CrossRef Vitol EA, Novosad V, Rozhkova EA (2012b) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (Lond) 7:1611–1624. doi:10.​2217/​nnm.​12.​133 CrossRef
Zurück zum Zitat Vitol EA, Novosad V, Rozhkova EA (2012a) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (London) 7:1611–1624. doi:10.2217/nnm.12.133 CrossRef Vitol EA, Novosad V, Rozhkova EA (2012a) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (London) 7:1611–1624. doi:10.​2217/​nnm.​12.​133 CrossRef
Zurück zum Zitat Wang B, Bienvenu C, Mendez-Garza J, Madeira PA, Vierling P, Di Giorgio C, Bossis G (2013) Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J of Magnetism and Magnetic Materials 344:193–201. doi:10.1016/j.jmmm.2013.05.043 CrossRef Wang B, Bienvenu C, Mendez-Garza J, Madeira PA, Vierling P, Di Giorgio C, Bossis G (2013) Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J of Magnetism and Magnetic Materials 344:193–201. doi:10.​1016/​j.​jmmm.​2013.​05.​043 CrossRef
Zurück zum Zitat Warner S (2004) Diagnostics + therapy = theranostics. Scientist 18(16):38–39 Warner S (2004) Diagnostics + therapy = theranostics. Scientist 18(16):38–39
Zurück zum Zitat Wen J-D, Lancaster L, Hodges C, Zeri A, Yoshimura SH, Noller HF, Bustamante C, Tinoco I (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–604. doi:10.1038/nature06716 CrossRef Wen J-D, Lancaster L, Hodges C, Zeri A, Yoshimura SH, Noller HF, Bustamante C, Tinoco I (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–604. doi:10.​1038/​nature06716 CrossRef
Zurück zum Zitat Westbrook C (2014) Handbook of MRI technique, 4th Edition. Wiley-Blackwell Westbrook C (2014) Handbook of MRI technique, 4th Edition. Wiley-Blackwell
Zurück zum Zitat Wydra RJ, Oliver CE, Anderson KW, Dziubla TD, Hilt JZ (2015) Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field. RSC Adv 5:18888–18893. doi:10.1039/c4ra13564d CrossRef Wydra RJ, Oliver CE, Anderson KW, Dziubla TD, Hilt JZ (2015) Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field. RSC Adv 5:18888–18893. doi:10.​1039/​c4ra13564d CrossRef
Zurück zum Zitat Xu Y, Mahmood M, Li Z, Dervishi E, Trigwell S, Zharov VP, Ali N, Saini V, Biris AR, Lupu D, Boldor D, Biris AS (2008) Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology 19:43102. doi:10.1088/0957-4484/19/43/435102 Xu Y, Mahmood M, Li Z, Dervishi E, Trigwell S, Zharov VP, Ali N, Saini V, Biris AR, Lupu D, Boldor D, Biris AS (2008) Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology 19:43102. doi:10.​1088/​0957-4484/​19/​43/​435102
Zurück zum Zitat Yanagida T, Ishii Y (2009) Single molecule dynamics in life science. Wiley-VCH, Weinheim Yanagida T, Ishii Y (2009) Single molecule dynamics in life science. Wiley-VCH, Weinheim
Zurück zum Zitat Yin PT, Shah BP, Lee K-B (2014) Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10:4106–4112. doi:10.1002/smll.20140096 Yin PT, Shah BP, Lee K-B (2014) Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10:4106–4112. doi:10.​1002/​smll.​20140096
Zurück zum Zitat Zhang E, Kircher MF, Koch XM, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8(4):3192–3201. doi:10.1021/nn406302j CrossRef Zhang E, Kircher MF, Koch XM, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8(4):3192–3201. doi:10.​1021/​nn406302j CrossRef
Zurück zum Zitat Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121. doi:10.7150/thno.3854 CrossRef Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121. doi:10.​7150/​thno.​3854 CrossRef
Zurück zum Zitat Zong Y, Xin H, Zhang J, Lia X, Feng, Deng X, Sun Y, Zheng X (2017) One-pot, template- and surfactant-free solvothermal synthesis of highcrystalline Fe3O4 nanostructures with adjustable morphologies and high magnetization. J Magn Magn Mater 423:321–326. doi:10.1016/j.jmmm.2016.09.132 CrossRef Zong Y, Xin H, Zhang J, Lia X, Feng, Deng X, Sun Y, Zheng X (2017) One-pot, template- and surfactant-free solvothermal synthesis of highcrystalline Fe3O4 nanostructures with adjustable morphologies and high magnetization. J Magn Magn Mater 423:321–326. doi:10.​1016/​j.​jmmm.​2016.​09.​132 CrossRef
Metadaten
Titel
Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine
verfasst von
Yuri I. Golovin
Natalia L. Klyachko
Alexander G. Majouga
Marina Sokolsky
Alexander V. Kabanov
Publikationsdatum
01.02.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3746-5

Weitere Artikel der Ausgabe 2/2017

Journal of Nanoparticle Research 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.