Skip to main content

2019 | OriginalPaper | Buchkapitel

24. Thermal Analysis of Glass

verfasst von : Erick Koontz

Erschienen in: Springer Handbook of Glass

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter explores the use of thermal analysis in the characterization of glassy materials. Common characterization methods are described as well as a basic overview of the techniques mentioned. Differential scanning calorimetry, thermomechanical analysis, and measurement of glass viscosity are among the primary topics covered. The inner workings of each of the instruments in question is touched upon, along with general calibration procedures and best practices for measurement. Where appropriate, basic material science principles are used to improve the readers' understanding of the reason for a measurement or particular method. While outlining the most important instruments in the thermal analysis of glasses, key glass properties such as glass transition temperature, crystallization temperature, melting temperature, and softening point are explained. Finally, a discussion of glass viscosity necessary for an understanding of the most common viscosity measurement instruments and methods is included.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat C. Meade, R. Hemley, H. Mao: High-pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69(9), 1387–1390 (1992)CrossRef C. Meade, R. Hemley, H. Mao: High-pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69(9), 1387–1390 (1992)CrossRef
Zurück zum Zitat J.H. Gibbs, E.A. DiMarzio: Nature of the glass transition and the glassy state, J. Chem. Phys. 28, 373–383 (1958)CrossRef J.H. Gibbs, E.A. DiMarzio: Nature of the glass transition and the glassy state, J. Chem. Phys. 28, 373–383 (1958)CrossRef
Zurück zum Zitat C.A. Angell: The glass transition, Solid State Mater. Sci. 1, 578–585 (1996)CrossRef C.A. Angell: The glass transition, Solid State Mater. Sci. 1, 578–585 (1996)CrossRef
Zurück zum Zitat U. Fotheringham, R. Muller, K. Erb, A. Baltes, F. Siebers, E. Weiss, R. Dudek: Evaluation of the calorimetric glass transition of glasses and glass ceramics with respect to structural relaxation and dimensional stability, Thermochim. Acta 461, 72–81 (2007)CrossRef U. Fotheringham, R. Muller, K. Erb, A. Baltes, F. Siebers, E. Weiss, R. Dudek: Evaluation of the calorimetric glass transition of glasses and glass ceramics with respect to structural relaxation and dimensional stability, Thermochim. Acta 461, 72–81 (2007)CrossRef
Zurück zum Zitat A. Bestul, S. Chang: Excess entropy at glass transformation, J. Chem. Phys. 40, 3731–3733 (1964)CrossRef A. Bestul, S. Chang: Excess entropy at glass transformation, J. Chem. Phys. 40, 3731–3733 (1964)CrossRef
Zurück zum Zitat M. Goldstein: Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728–3739 (1969)CrossRef M. Goldstein: Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728–3739 (1969)CrossRef
Zurück zum Zitat R.J. Speedy: Kauzmann's paradox and the glass transition, Biophys. Chem. 105, 411–420 (2003)CrossRef R.J. Speedy: Kauzmann's paradox and the glass transition, Biophys. Chem. 105, 411–420 (2003)CrossRef
Zurück zum Zitat L.C. Thomas: Making Accurate DSC and MDSC Specific Heat Capacity Measurements with the Q1000 Tzero DSC (TA Instruments, New Castle 2002) L.C. Thomas: Making Accurate DSC and MDSC Specific Heat Capacity Measurements with the Q1000 Tzero DSC (TA Instruments, New Castle 2002)
Zurück zum Zitat J. Mauro, R. Loucks, P. Gupta: Fictive temperature and the glassy state, J. Am. Ceram. Soc. 92, 75–86 (2009)CrossRef J. Mauro, R. Loucks, P. Gupta: Fictive temperature and the glassy state, J. Am. Ceram. Soc. 92, 75–86 (2009)CrossRef
Zurück zum Zitat E. Koontz: Characterization of Structural Relaxation in Inorganic Glasses Using Length Dilatometry, Ph.D. Thesis (Clemson Univ., Clemson 2015) E. Koontz: Characterization of Structural Relaxation in Inorganic Glasses Using Length Dilatometry, Ph.D. Thesis (Clemson Univ., Clemson 2015)
Zurück zum Zitat C. Moynihan, A.J. Easteal, J.T.J. Wilder: Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem. 78(26), 2673–2677 (1974)CrossRef C. Moynihan, A.J. Easteal, J.T.J. Wilder: Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem. 78(26), 2673–2677 (1974)CrossRef
Zurück zum Zitat E. Marseglia, E. Davis: Crystallization of amorphous selenium and As0.005Se0.995, J. Non-Cryst. Solids 50, 13–21 (1982)CrossRef E. Marseglia, E. Davis: Crystallization of amorphous selenium and As0.005Se0.995, J. Non-Cryst. Solids 50, 13–21 (1982)CrossRef
Zurück zum Zitat N.P. Bansal, R.H. Doremus, A.J. Bruce, C. Moynihan: Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry, J. Am. Ceram. Soc. 66(4), 233–238 (1983)CrossRef N.P. Bansal, R.H. Doremus, A.J. Bruce, C. Moynihan: Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry, J. Am. Ceram. Soc. 66(4), 233–238 (1983)CrossRef
Zurück zum Zitat J. Massera, J. Remond, J.D. Musgraves, M.J. Davis, S. Misture, L. Petit, K. Richardson: Nucleation and growth behavior of glasses in the TeO2–Bi2O3–ZnO glass system, J. Non-Cryst. Solids 356, 2947–2955 (2010)CrossRef J. Massera, J. Remond, J.D. Musgraves, M.J. Davis, S. Misture, L. Petit, K. Richardson: Nucleation and growth behavior of glasses in the TeO2–Bi2O3–ZnO glass system, J. Non-Cryst. Solids 356, 2947–2955 (2010)CrossRef
Zurück zum Zitat A. Marotta, A. Buri, F. Branda: Nucleation in glass and differential thermal analysis, J. Mater. Sci. 16, 341 (1981)CrossRef A. Marotta, A. Buri, F. Branda: Nucleation in glass and differential thermal analysis, J. Mater. Sci. 16, 341 (1981)CrossRef
Zurück zum Zitat C. Ray, K. Ransinghe, D. Day: Determining crystal growth TRAte-type of curves in glasses by differential thermal analysis, Solid State Sci. 3, 727 (2001)CrossRef C. Ray, K. Ransinghe, D. Day: Determining crystal growth TRAte-type of curves in glasses by differential thermal analysis, Solid State Sci. 3, 727 (2001)CrossRef
Zurück zum Zitat H. Yinnon, D. Uhlmann: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, Part I: Theory, J. Non-Cryst. Solids 54, 253–275 (1983)CrossRef H. Yinnon, D. Uhlmann: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, Part I: Theory, J. Non-Cryst. Solids 54, 253–275 (1983)CrossRef
Zurück zum Zitat J. Holubova, Z. Černošek, E. Cernoskova, M. Liska: Isothermal structural relaxation: temperature and time dependencies of relaxation parameters, J. Non-Cryst. Solids 326, 135–140 (2003)CrossRef J. Holubova, Z. Černošek, E. Cernoskova, M. Liska: Isothermal structural relaxation: temperature and time dependencies of relaxation parameters, J. Non-Cryst. Solids 326, 135–140 (2003)CrossRef
Zurück zum Zitat L.C. Thomas: Why Modulated DSC?; An Overview and Summary of Advantages and Disadvantages Relative to Traditional DSC (TA Instruments, New Castle 2005) L.C. Thomas: Why Modulated DSC?; An Overview and Summary of Advantages and Disadvantages Relative to Traditional DSC (TA Instruments, New Castle 2005)
Zurück zum Zitat J. Schawe, T. Heutter, C. Heitz, I. Alig, D. Lellinger: Stochastic temperature modulation: A new technique in temperature-modulated DSC, Thermochim. Acta 446, 147–155 (2006)CrossRef J. Schawe, T. Heutter, C. Heitz, I. Alig, D. Lellinger: Stochastic temperature modulation: A new technique in temperature-modulated DSC, Thermochim. Acta 446, 147–155 (2006)CrossRef
Zurück zum Zitat S.O. Kasap, T. Wagner, K. Maeda: Heat capacity and structure of chalcogenide glasses by modulated differential scanning calorimetry (MDSC), Jpn. Soc. Appl. Phys. 35, 1116–1120 (1996)CrossRef S.O. Kasap, T. Wagner, K. Maeda: Heat capacity and structure of chalcogenide glasses by modulated differential scanning calorimetry (MDSC), Jpn. Soc. Appl. Phys. 35, 1116–1120 (1996)CrossRef
Zurück zum Zitat S. Kasap, D. Tonchev, T. Wagner: Heat capacity and the structure of chalcogenide glasses studied by temperature-modulated differential scanning calorimetry, J. Mater. Sci. Lett. 17, 1809–1811 (1998)CrossRef S. Kasap, D. Tonchev, T. Wagner: Heat capacity and the structure of chalcogenide glasses studied by temperature-modulated differential scanning calorimetry, J. Mater. Sci. Lett. 17, 1809–1811 (1998)CrossRef
Zurück zum Zitat E. Koontz, V. Blouin, P. Wachtel, J.D. Musgraves, K. Richardson: Prony series spectra of structural relaxation in N-BK7 for finite element modeling, J. Phys. Chem. A 116(50), 12198–12205 (2012)CrossRef E. Koontz, V. Blouin, P. Wachtel, J.D. Musgraves, K. Richardson: Prony series spectra of structural relaxation in N-BK7 for finite element modeling, J. Phys. Chem. A 116(50), 12198–12205 (2012)CrossRef
Zurück zum Zitat J. Malek: Structural relaxation of As2S3 glass by length dilatometry, J. Non-Cryst. Solids 235, 527–533 (1998)CrossRef J. Malek: Structural relaxation of As2S3 glass by length dilatometry, J. Non-Cryst. Solids 235, 527–533 (1998)CrossRef
Zurück zum Zitat A.Y. Yi, A. Jain: Compression Molding of Aspherical Glass Lenses – A Combined Experimental and Numerical Analysis, J. Am. Ceram. Soc. 88, 579–586 (2005)CrossRef A.Y. Yi, A. Jain: Compression Molding of Aspherical Glass Lenses – A Combined Experimental and Numerical Analysis, J. Am. Ceram. Soc. 88, 579–586 (2005)CrossRef
Zurück zum Zitat T. Zhou, J. Yan, T. Kuriyagawa: Evaluating the visoelastic properties of glass above transition temperature for numerical modeling of lens molding process, Proc. SPIE 6624, 662403 (2008)CrossRef T. Zhou, J. Yan, T. Kuriyagawa: Evaluating the visoelastic properties of glass above transition temperature for numerical modeling of lens molding process, Proc. SPIE 6624, 662403 (2008)CrossRef
Zurück zum Zitat S. Carmi, S. Havlin, C. Song, K. Wang, H.A. Makse: Energy-landscape network approach to the glass transition, J. Phys. A: Math. Theor. 42, 105101 (2009)CrossRef S. Carmi, S. Havlin, C. Song, K. Wang, H.A. Makse: Energy-landscape network approach to the glass transition, J. Phys. A: Math. Theor. 42, 105101 (2009)CrossRef
Zurück zum Zitat R. Gy, L. Duffrene, M. Labrot: New insights into the viscoelasticity of glass, J. Non-Cryst. Solids 175, 103–117 (1994)CrossRef R. Gy, L. Duffrene, M. Labrot: New insights into the viscoelasticity of glass, J. Non-Cryst. Solids 175, 103–117 (1994)CrossRef
Zurück zum Zitat K.L. Ngai, A.K. Rajaggopal, R. Rendell: Models of Kohlrausch relaxations, IEEE Trans. Electr. Insulation 21, 313–318 (1986)CrossRef K.L. Ngai, A.K. Rajaggopal, R. Rendell: Models of Kohlrausch relaxations, IEEE Trans. Electr. Insulation 21, 313–318 (1986)CrossRef
Zurück zum Zitat M. Potuzak, R.C. Welch, J.C. Mauro: Topological origin of stretched exponential relaxation in glass, J. Chem. Phys. 135, 214502 (2011)CrossRef M. Potuzak, R.C. Welch, J.C. Mauro: Topological origin of stretched exponential relaxation in glass, J. Chem. Phys. 135, 214502 (2011)CrossRef
Zurück zum Zitat M.A. Schiavon, G.D. Soraru, V.P. Yoshida: Synthesis of polycyclic silazane network and it's evolution to silicon carbonitride glass, J. Non-Cryst. Solids 304, 76–83 (2002)CrossRef M.A. Schiavon, G.D. Soraru, V.P. Yoshida: Synthesis of polycyclic silazane network and it's evolution to silicon carbonitride glass, J. Non-Cryst. Solids 304, 76–83 (2002)CrossRef
Zurück zum Zitat ASTM Standard C1351M-96: Standard Test Method for Measurement of Viscosity of Glass Between 104 Pa·s and 108 Pa·s by Viscous Compression of a Solid Right Cylinder (ASTM International, West Conshohocken 2012) ASTM Standard C1351M-96: Standard Test Method for Measurement of Viscosity of Glass Between 104 Pa·s and 108 Pa·s by Viscous Compression of a Solid Right Cylinder (ASTM International, West Conshohocken 2012)
Zurück zum Zitat E. Fontana: A versatile parallel-plate viscometer for glass viscosity measurements to 1000 °C, Bull. Am. Ceram. Soc. 49(6), 594–597 (1970) E. Fontana: A versatile parallel-plate viscometer for glass viscosity measurements to 1000 °C, Bull. Am. Ceram. Soc. 49(6), 594–597 (1970)
Zurück zum Zitat ASTM Standard C1350M-96: Standard Test Method for Measurement of Viscosity of Glass Between Softening Point and Annealing Range (Approximately 108 Pa·s to Approximately 1013 Pa·s) by Beam Bending (ASTM International, West Conshohocken 2013) ASTM Standard C1350M-96: Standard Test Method for Measurement of Viscosity of Glass Between Softening Point and Annealing Range (Approximately 108 Pa·s to Approximately 1013 Pa·s) by Beam Bending (ASTM International, West Conshohocken 2013)
Zurück zum Zitat ISO 7884-3: Glass Viscosity and Viscometric Fixed Points, Part 3: Determination of Viscosity by Fibre Elongation Viscometer (International Organization for Standardization, Geneva 1998) ISO 7884-3: Glass Viscosity and Viscometric Fixed Points, Part 3: Determination of Viscosity by Fibre Elongation Viscometer (International Organization for Standardization, Geneva 1998)
Zurück zum Zitat ASTM Standard C338-93: Standard Test Method for Softening Point of Glass (ASTM International, West Conshohocken 2003) ASTM Standard C338-93: Standard Test Method for Softening Point of Glass (ASTM International, West Conshohocken 2003)
Zurück zum Zitat R. Douglas, W.L. Armstrong, J.P. Edward, D. Hall: A Penetration Viscometer, Glass Technol. 6, 52–55 (1965) R. Douglas, W.L. Armstrong, J.P. Edward, D. Hall: A Penetration Viscometer, Glass Technol. 6, 52–55 (1965)
Zurück zum Zitat R. Brueckner, G. Demharter: Systematic investigation of the use of penetration viscometers, Glass Technol. 48(1), 12–18 (1975) R. Brueckner, G. Demharter: Systematic investigation of the use of penetration viscometers, Glass Technol. 48(1), 12–18 (1975)
Zurück zum Zitat G.W. Scherer: Editorial comments on a paper by Gordon S. Fulcher, J. Am. Ceram. Soc. 75, 1060–1062 (1992)CrossRef G.W. Scherer: Editorial comments on a paper by Gordon S. Fulcher, J. Am. Ceram. Soc. 75, 1060–1062 (1992)CrossRef
Zurück zum Zitat G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 1043 (1925) G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 1043 (1925)
Zurück zum Zitat J.D. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, K. Richardson: Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system, J. Appl. Phys. 110, 06503 (2011)CrossRef J.D. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, K. Richardson: Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system, J. Appl. Phys. 110, 06503 (2011)CrossRef
Zurück zum Zitat C. Angell: Relaxation in liquids, polymers and plastic crystals – Strong fragile patterns and problems, J. Non-Cryst. Solids 131-133, 13–31 (1991)CrossRef C. Angell: Relaxation in liquids, polymers and plastic crystals – Strong fragile patterns and problems, J. Non-Cryst. Solids 131-133, 13–31 (1991)CrossRef
Zurück zum Zitat J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRef J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRef
Zurück zum Zitat I. Avramov, A. Milchev: Effect of disorder on diffusion and viscosity of condensed systems, J. Non-Cryst. Solids 104, 253–260 (1988)CrossRef I. Avramov, A. Milchev: Effect of disorder on diffusion and viscosity of condensed systems, J. Non-Cryst. Solids 104, 253–260 (1988)CrossRef
Zurück zum Zitat L.W. Wang, H.-J. Fecht: A kinetic model for liquids: Relaxation in liquids, origin of the Vogel-Tammann-Fulcher equation, and the essence of fragility, J. Appl. Phys. 104, 113538–113538-10 (2008)CrossRef L.W. Wang, H.-J. Fecht: A kinetic model for liquids: Relaxation in liquids, origin of the Vogel-Tammann-Fulcher equation, and the essence of fragility, J. Appl. Phys. 104, 113538–113538-10 (2008)CrossRef
Metadaten
Titel
Thermal Analysis of Glass
verfasst von
Erick Koontz
Copyright-Jahr
2019
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-93728-1_24

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.