Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Thermal Considerations for Supercapacitors

verfasst von : Guoping Xiong, Arpan Kundu, Timothy S. Fisher

Erschienen in: Thermal Effects in Supercapacitors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy loss in the form of heat generation is inevitable in supercapacitors because coulombic efficiencies are always less than 100 %. The rate of heat generation depends on structural design, power profiles (e.g., charge/discharge rates), and other factors such as voltage imbalances among individual cells within a module. This heat generation causes a temperature rise within the cells. For instance, voltage imbalances can occur in a series string of supercapacitor modules, resulting in temperature differences among the cells. Reliability issues arise when some cells with higher temperatures fail sooner than others, since high temperature generally causes shorter life for the cells. Thus thermal management of supercapacitor systems is important for practical applications. This chapter provides a general discussion of thermal management in supercapacitors, including different practical applications, thermophysical properties of supercapacitor components, thermal transport mechanisms, thermal characterization techniques, performance metrics, and cooling systems. This chapter paves the way for the following chapters that address thermal influences on supercapacitor components and performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mars P (2011) A survey of supercapacitors, their applications, power design with supercapacitors, and future directions. In: IEEE technology time machine symposium on technologies beyond 2020, pp 1–2. IEEE, HongKong Mars P (2011) A survey of supercapacitors, their applications, power design with supercapacitors, and future directions. In: IEEE technology time machine symposium on technologies beyond 2020, pp 1–2. IEEE, HongKong
2.
Zurück zum Zitat Mohseni P, Najafi K, Eliades SJ et al (2005) Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans Neur Sys Rehabil 13:263–271CrossRef Mohseni P, Najafi K, Eliades SJ et al (2005) Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans Neur Sys Rehabil 13:263–271CrossRef
3.
Zurück zum Zitat Nieder A (2000) Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls. J Neurosci Methods 101:157–164CrossRef Nieder A (2000) Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls. J Neurosci Methods 101:157–164CrossRef
4.
Zurück zum Zitat Hautefeuille M, O’Mahony C, O’Flynn B et al (2008) A MEMS-based wireless multisensor module for environmental monitoring. Microelectron Reliab 48:906–910CrossRef Hautefeuille M, O’Mahony C, O’Flynn B et al (2008) A MEMS-based wireless multisensor module for environmental monitoring. Microelectron Reliab 48:906–910CrossRef
5.
Zurück zum Zitat Albano F, Lin YS, Blaauw D et al (2008) A fully integrated microbattery for an implantable microelectromechanical system. J Power Sources 185:1524–1532CrossRef Albano F, Lin YS, Blaauw D et al (2008) A fully integrated microbattery for an implantable microelectromechanical system. J Power Sources 185:1524–1532CrossRef
6.
Zurück zum Zitat Jones SD, Akridge JR (1996) A microfabricated solid-state secondary Li battery. Solid State Ionics 86–8:1291–1294CrossRef Jones SD, Akridge JR (1996) A microfabricated solid-state secondary Li battery. Solid State Ionics 86–8:1291–1294CrossRef
7.
Zurück zum Zitat Lin J, Zhang CG, Yan Z et al (2013) 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett 13:72–78CrossRef Lin J, Zhang CG, Yan Z et al (2013) 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett 13:72–78CrossRef
8.
Zurück zum Zitat Kurra N, Alhebshi NA, Alshareef HN (2015) Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv Energy Mater 5:1401303CrossRef Kurra N, Alhebshi NA, Alshareef HN (2015) Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv Energy Mater 5:1401303CrossRef
9.
Zurück zum Zitat Morse JD (2007) Micro-fuel cell power sources. Int J Energ Res 31:576–602CrossRef Morse JD (2007) Micro-fuel cell power sources. Int J Energ Res 31:576–602CrossRef
10.
Zurück zum Zitat Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
11.
Zurück zum Zitat Long JW, Dunn B, Rolison DR et al (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492CrossRef Long JW, Dunn B, Rolison DR et al (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492CrossRef
12.
Zurück zum Zitat Roberts M, Johns P, Owen J et al (2011) 3D lithium ion batteries-from fundamentals to fabrication. J Mater Chem 21:9876–9890CrossRef Roberts M, Johns P, Owen J et al (2011) 3D lithium ion batteries-from fundamentals to fabrication. J Mater Chem 21:9876–9890CrossRef
13.
Zurück zum Zitat Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51CrossRef Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51CrossRef
14.
Zurück zum Zitat Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93CrossRef Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93CrossRef
15.
Zurück zum Zitat Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977CrossRef Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977CrossRef
16.
Zurück zum Zitat Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579CrossRef Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579CrossRef
17.
Zurück zum Zitat Yuan CZ, Zhang XG, Wu QF et al (2006) Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177:1237–1242CrossRef Yuan CZ, Zhang XG, Wu QF et al (2006) Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177:1237–1242CrossRef
18.
Zurück zum Zitat Kittel C (1996) Introduction to solid state physics. Wiley, London Kittel C (1996) Introduction to solid state physics. Wiley, London
19.
Zurück zum Zitat White MW (2006) Viscous fluid flow. McGraw-Hill, New York White MW (2006) Viscous fluid flow. McGraw-Hill, New York
20.
Zurück zum Zitat Anouti M, Couadou E, Timperman L et al (2012) Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta 64:110–117CrossRef Anouti M, Couadou E, Timperman L et al (2012) Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta 64:110–117CrossRef
21.
Zurück zum Zitat Abramowitz R, Yalkowsky SH (1990) Melting point, boiling point, and symmetry. Pharmaceut Res 7:942–947 Abramowitz R, Yalkowsky SH (1990) Melting point, boiling point, and symmetry. Pharmaceut Res 7:942–947
22.
Zurück zum Zitat Mirkhani SA, Gharagheizi F, Ilani-Kashkouli P et al (2012) Determination of the glass transition temperature of ionic liquids: A molecular approach. Thermochim Acta 543:88–95CrossRef Mirkhani SA, Gharagheizi F, Ilani-Kashkouli P et al (2012) Determination of the glass transition temperature of ionic liquids: A molecular approach. Thermochim Acta 543:88–95CrossRef
23.
Zurück zum Zitat Gharagheizi F, Eslamimanesh A, Mohammadi AH et al (2011) QSPR approach for determination of parachor of non-electrolyte organic compounds. Chem Eng Sci 66:2959–2967CrossRef Gharagheizi F, Eslamimanesh A, Mohammadi AH et al (2011) QSPR approach for determination of parachor of non-electrolyte organic compounds. Chem Eng Sci 66:2959–2967CrossRef
24.
Zurück zum Zitat Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53CrossRef Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53CrossRef
25.
Zurück zum Zitat Van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188CrossRef Van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188CrossRef
26.
Zurück zum Zitat Fox DM, Gilman JW, De Long HC et al (2005) TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn 37:900–905CrossRef Fox DM, Gilman JW, De Long HC et al (2005) TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn 37:900–905CrossRef
27.
Zurück zum Zitat Baranyai KJ, Deacon GB, Macfarlane DR et al (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 145–147 Baranyai KJ, Deacon GB, Macfarlane DR et al (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 145–147
28.
Zurück zum Zitat Kroon MC, Buijs W, Peters CJ et al (2007) Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta 465:40–47CrossRef Kroon MC, Buijs W, Peters CJ et al (2007) Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta 465:40–47CrossRef
29.
Zurück zum Zitat Gualous H, Louahlia-Gualous H, Gallay R et al (2009) Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans Ind Appl 45 Gualous H, Louahlia-Gualous H, Gallay R et al (2009) Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans Ind Appl 45
30.
Zurück zum Zitat Coats AW, Redfern JP (1963) Thermogravimetric Analysis. A review. Analyst 88:906–924CrossRef Coats AW, Redfern JP (1963) Thermogravimetric Analysis. A review. Analyst 88:906–924CrossRef
31.
Zurück zum Zitat McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86CrossRef McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86CrossRef
32.
Zurück zum Zitat Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573CrossRef Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573CrossRef
33.
Zurück zum Zitat Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367CrossRef Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367CrossRef
34.
Zurück zum Zitat Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309CrossRef Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309CrossRef
35.
Zurück zum Zitat Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, London Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, London
36.
Zurück zum Zitat Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom JMS 36:849–865CrossRef Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom JMS 36:849–865CrossRef
37.
Zurück zum Zitat Chowdhury A, Thynell ST (2006) Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids. Thermochim Acta 443:159–172CrossRef Chowdhury A, Thynell ST (2006) Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids. Thermochim Acta 443:159–172CrossRef
38.
Zurück zum Zitat Höhne G, Hemminger W, Flammersheim HJ (2003) Differential scanning calorimetry. Springer, Berlin Höhne G, Hemminger W, Flammersheim HJ (2003) Differential scanning calorimetry. Springer, Berlin
39.
Zurück zum Zitat Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555CrossRef Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555CrossRef
40.
Zurück zum Zitat Wang H, Xu ZW, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141CrossRef Wang H, Xu ZW, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141CrossRef
41.
Zurück zum Zitat Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708CrossRef Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708CrossRef
42.
Zurück zum Zitat Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587CrossRef Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587CrossRef
43.
Zurück zum Zitat Xia ZP, Zhou CQ, Shen D et al (2014) Study on the cooling system of super-capacitors for hybrid electric vehicle. Appl Mech Mater 492:37–42CrossRef Xia ZP, Zhou CQ, Shen D et al (2014) Study on the cooling system of super-capacitors for hybrid electric vehicle. Appl Mech Mater 492:37–42CrossRef
44.
Zurück zum Zitat Wilk MD, Stone KT (2004) Ultracapacitor energy storage cell pack and methods of assembling and cooling the same. Google Patents Wilk MD, Stone KT (2004) Ultracapacitor energy storage cell pack and methods of assembling and cooling the same. Google Patents
45.
Zurück zum Zitat Nguyen VD, Smith AJ, Stone KT et al (2010) Energy storage pack cooling system and method. Google Patents Nguyen VD, Smith AJ, Stone KT et al (2010) Energy storage pack cooling system and method. Google Patents
46.
Zurück zum Zitat Myers NP, Trent TC (2013) Cooling system and method. Google Patents Myers NP, Trent TC (2013) Cooling system and method. Google Patents
47.
Zurück zum Zitat Yatskov AI, Marsala J (2011) Cooling system and method. Google Patents Yatskov AI, Marsala J (2011) Cooling system and method. Google Patents
48.
Zurück zum Zitat Wilk MD, T.Stone K, Quintana NAV (2009) High-power ultracapacitor energy storage pack and method of use. Patent Citation, ISE Corporation, Poway CA, United States Wilk MD, T.Stone K, Quintana NAV (2009) High-power ultracapacitor energy storage pack and method of use. Patent Citation, ISE Corporation, Poway CA, United States
49.
Zurück zum Zitat Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53–57 Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53–57
50.
Zurück zum Zitat Hallaj SA, Selman JR (2000) A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc 147:3231–3236CrossRef Hallaj SA, Selman JR (2000) A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc 147:3231–3236CrossRef
51.
Zurück zum Zitat Kizilel R, Lateef A, Sabbah R et al (2008) Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources 183:370–375CrossRef Kizilel R, Lateef A, Sabbah R et al (2008) Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources 183:370–375CrossRef
52.
Zurück zum Zitat Khateeb SA, Farid MM, Selman JR et al (2004) Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 128:292–307CrossRef Khateeb SA, Farid MM, Selman JR et al (2004) Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 128:292–307CrossRef
53.
Zurück zum Zitat Michaud F, Mondieig D, Soubzmaigne V et al (1996) A sytem with a less than 2 degree melting window in the range within −31°C and −45°C chlorobenzene-bromobenzene. Mater Res Bull 31:943–950CrossRef Michaud F, Mondieig D, Soubzmaigne V et al (1996) A sytem with a less than 2 degree melting window in the range within −31°C and −45°C chlorobenzene-bromobenzene. Mater Res Bull 31:943–950CrossRef
54.
Zurück zum Zitat Hawes DW, Feldman D (1992) Absorption of phase change materials in concrete. Sol Energy Mater Sol Cells 27:91–101CrossRef Hawes DW, Feldman D (1992) Absorption of phase change materials in concrete. Sol Energy Mater Sol Cells 27:91–101CrossRef
Metadaten
Titel
Thermal Considerations for Supercapacitors
verfasst von
Guoping Xiong
Arpan Kundu
Timothy S. Fisher
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-20242-6_2