Skip to main content
Erschienen in: Strength of Materials 1/2016

22.03.2016

Thermal Fatigue Life Prediction of Ventilation Air Methane Oxidation Bed

verfasst von: Y. Q. Liu, Q. H. Shang, D. H. Zhang, Y. X. Wang, T. T. Sun

Erschienen in: Strength of Materials | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal flow-reversal oxidation is the main technology that can effectively reduce emissions of ventilation air methane. As the core component of coal mine ventilation oxidation devices, honeycomb ceramic oxidation beds play a decisive role in the functionality of these devices. The thermal fatigue properties of mullite ceramic, which is commonly used in oxidation beds, were tested in the present research. Then, the service life of the oxidation bed was predicted according to the intensity attenuation law and the thermal fatigue experimental data. The results of the fatigue experiment indicated that in general, the bending strength of mullite ceramics decreases as thermal shocks increase. At higher temperature differences, the bending strength decreased at higher rates. At the temperature differences between 600 and 800°C, the bending strength initially declined. Then, after reaching a certain value, it remained unchanged for a while before declining again. The calculation results via the proposed equation based on the intensity attenuation theory and the thermal fatigue experimental data indicate that the thermal fatigue life of an oxidation bed is about 1–8 months. The predicted result is consistent with actual working conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. P. Cheng, L. Wang, and X. L. Zhang, “Environmental impact of coal mine methane emissions and responding strategies in China,” Int. J. Greenhouse Gas Control, 5, 157–166 (2011).CrossRef Y. P. Cheng, L. Wang, and X. L. Zhang, “Environmental impact of coal mine methane emissions and responding strategies in China,” Int. J. Greenhouse Gas Control, 5, 157–166 (2011).CrossRef
2.
Zurück zum Zitat K. Warmuzinski, “Harnessing methane emissions from coal mining,” Process Safety Environ. Protect., 86, 315–320 (2008).CrossRef K. Warmuzinski, “Harnessing methane emissions from coal mining,” Process Safety Environ. Protect., 86, 315–320 (2008).CrossRef
3.
Zurück zum Zitat K. Gosiewski, Y. Sh. Matros, K. Warmuzinski, et al., “Homogeneous vs. catalytic combustion of lean methane-air mixtures in reverse-flow reactors,” Chem. Eng. Sci., 63, 5010–5019 (2008).CrossRef K. Gosiewski, Y. Sh. Matros, K. Warmuzinski, et al., “Homogeneous vs. catalytic combustion of lean methane-air mixtures in reverse-flow reactors,” Chem. Eng. Sci., 63, 5010–5019 (2008).CrossRef
4.
Zurück zum Zitat Y. X. Yuan, “Emission and utilization of coal mine VAM,” Energy and Energy Conservation, 11, 55–57 (2012). Y. X. Yuan, “Emission and utilization of coal mine VAM,” Energy and Energy Conservation, 11, 55–57 (2012).
5.
Zurück zum Zitat I. Karakurt, G. Aydin, and K. Aydiner, “Mine ventilation air methane as a sustainable energy source,” Renewable and Sustainable Energy Reviews, 1, 1042–1049 (2011).CrossRef I. Karakurt, G. Aydin, and K. Aydiner, “Mine ventilation air methane as a sustainable energy source,” Renewable and Sustainable Energy Reviews, 1, 1042–1049 (2011).CrossRef
6.
Zurück zum Zitat P. F. Wang, T. Feng, and X. L. Hao, “One-dimensional numerical simulation of thermal reverse-flow oxidation of ventilation air methane in coal mine,” J. Min. Safety Eng., 29, 435–439 (2012). P. F. Wang, T. Feng, and X. L. Hao, “One-dimensional numerical simulation of thermal reverse-flow oxidation of ventilation air methane in coal mine,” J. Min. Safety Eng., 29, 435–439 (2012).
7.
Zurück zum Zitat M. M. Mao, Y. Q. Liu, B. Zheng, et al., “Investigation of temperature distribution uniformity in a preheating catalytic oxidation bed,” J. China Coal Soc., 40, 109–114 (2015). M. M. Mao, Y. Q. Liu, B. Zheng, et al., “Investigation of temperature distribution uniformity in a preheating catalytic oxidation bed,” J. China Coal Soc., 40, 109–114 (2015).
8.
Zurück zum Zitat P. Y. Sang, L. Chen, X. N. Zhang, et al., “Mine diluted gas low concentration gas oxidation numerical simulation research,” Coal Chem. Industry, 37, 24–27 (2014). P. Y. Sang, L. Chen, X. N. Zhang, et al., “Mine diluted gas low concentration gas oxidation numerical simulation research,” Coal Chem. Industry, 37, 24–27 (2014).
9.
Zurück zum Zitat P. F. Wang, T. Feng, S. L. Li, et al., “Resistance characteristics of thermal reverse flow oxidation bed for coal mine ventilation air methane,” Natural Gas Industry, 32, 73–77 (2012). P. F. Wang, T. Feng, S. L. Li, et al., “Resistance characteristics of thermal reverse flow oxidation bed for coal mine ventilation air methane,” Natural Gas Industry, 32, 73–77 (2012).
10.
Zurück zum Zitat Z. Z. Jin, Y. W. Bao, and X. M. Yue, “High temperature fatigue strength degradation theory for structural ceramics,” High Technol. Lett., 12, 31–36 (1994). Z. Z. Jin, Y. W. Bao, and X. M. Yue, “High temperature fatigue strength degradation theory for structural ceramics,” High Technol. Lett., 12, 31–36 (1994).
11.
Zurück zum Zitat J. Z. Wang, Z. Z. Jin, H. Wang, et al., “Research on thermal shock fatigue of refractories,” J. Chinese Ceram. Soc., 28, 91–94 (2000). J. Z. Wang, Z. Z. Jin, H. Wang, et al., “Research on thermal shock fatigue of refractories,” J. Chinese Ceram. Soc., 28, 91–94 (2000).
12.
Zurück zum Zitat Z. X. Li, X. S. Wang, and Z. G. Wang, “Analysis on the devastate mechanics of ceramic regenerative materials,” Metallurgy and Energy, 22, 43–45 (2003). Z. X. Li, X. S. Wang, and Z. G. Wang, “Analysis on the devastate mechanics of ceramic regenerative materials,” Metallurgy and Energy, 22, 43–45 (2003).
Metadaten
Titel
Thermal Fatigue Life Prediction of Ventilation Air Methane Oxidation Bed
verfasst von
Y. Q. Liu
Q. H. Shang
D. H. Zhang
Y. X. Wang
T. T. Sun
Publikationsdatum
22.03.2016
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2016
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-016-9731-x

Weitere Artikel der Ausgabe 1/2016

Strength of Materials 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.