Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-8/2019

24.07.2019 | ORIGINAL ARTICLE

Thermal model for surface grinding application

verfasst von: Lucas de Martini Fernandes, José Claudio Lopes, Fernando Sabino Fonteque Ribeiro, Rubens Gallo, Henrique Cotait Razuk, Luiz Eduardo de Angelo Sanchez, Paulo Roberto de Aguiar, Hamilton José de Mello, Eduardo Carlos Bianchi

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the characteristics of the grinding process, thermal damage may occur in the workpiece surface, resulting in the rejection of a component and considerably increasing the production costs. This study aims to analyze the heat fluxes, energy partition, and temperatures during surface grinding process with both conventional and MQL lubrication. Through the proposed analysis, the heat fluxes and maximum temperature can be predicted, enabling the avoidance of thermal damages and increasing the efficiency of the process. A comparison between the calculated and experimental value has shown that the difference is acceptable for various situations, in the order of 4.72% for the conventional method and 7.38% for the MQL method. A thermal model was developed. The transient two-dimensional heat diffusion equation was discretized by finite volume method in space and explicit discretized in time. The heat fluxes were estimated using inverse problem technique of heat transfer aiming the obtainment of the temperature of certain workpiece points. A comparison of the methods of lubrication showed that the conventional method was way more efficient than MQL, presenting considerably lower total heat flux and maximum reached temperature and any kind of thermal damage wasn’t observed. On the other hand, thermal damage occurred in the workpieces. Also, clogging phenomenon in the grinding wheel surface after the process in MQL condition was observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wegener K, Bleicher F, Krajnik P, Hoffmeister H, Brecher C (2017) Recent developments in grinding machines. CIRP Ann Manuf Technol 66:779–802CrossRef Wegener K, Bleicher F, Krajnik P, Hoffmeister H, Brecher C (2017) Recent developments in grinding machines. CIRP Ann Manuf Technol 66:779–802CrossRef
2.
Zurück zum Zitat Lavisse B, Lefebvre A, Torrance AA, Sinot O, Henrion E, Lemarié S, Tidu A (2018) The effects of the flow rate and speed of lubricoolant jets on heat transfer in the contact zone when grinding a nitrided steel. J Manuf Process 35:233–243CrossRef Lavisse B, Lefebvre A, Torrance AA, Sinot O, Henrion E, Lemarié S, Tidu A (2018) The effects of the flow rate and speed of lubricoolant jets on heat transfer in the contact zone when grinding a nitrided steel. J Manuf Process 35:233–243CrossRef
3.
Zurück zum Zitat Foeckerer T, Zaeh MF, Zhang OB (2013) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf 56:223–237CrossRef Foeckerer T, Zaeh MF, Zhang OB (2013) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf 56:223–237CrossRef
4.
Zurück zum Zitat Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M, Zhang N, Wu Q, Han Z, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11CrossRef Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M, Zhang N, Wu Q, Han Z, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11CrossRef
5.
Zurück zum Zitat Gupta A, Swami P, Balan ASS, Kuppan P, Oyyaravelu R (2018) Numerical modeling and heat transfer analysis of minimum quantity lubrication grinding of Inconel 751. Mater Today 5:13358–13366 Gupta A, Swami P, Balan ASS, Kuppan P, Oyyaravelu R (2018) Numerical modeling and heat transfer analysis of minimum quantity lubrication grinding of Inconel 751. Mater Today 5:13358–13366
6.
Zurück zum Zitat Colaço MJ, Orlande HRB, Dulikravich GS (2006) Inverse and optimization problems in heat transfer. J Braz Soc Mech Sci Eng 28:1–24CrossRef Colaço MJ, Orlande HRB, Dulikravich GS (2006) Inverse and optimization problems in heat transfer. J Braz Soc Mech Sci Eng 28:1–24CrossRef
7.
Zurück zum Zitat Hadad M, Sadeghi B (2012) Thermal analysis of minimum quantity lubrification - MQL grinding process. Int J Mach Tool Manu 63:1–15CrossRef Hadad M, Sadeghi B (2012) Thermal analysis of minimum quantity lubrification - MQL grinding process. Int J Mach Tool Manu 63:1–15CrossRef
8.
Zurück zum Zitat Parente MPL, Jorge RMN, Vieira AA, Baptista AM (2012) Experimental and numerical study of the temperature field during creep grinding. Int J Adv Manuf Technol 61:127–134CrossRef Parente MPL, Jorge RMN, Vieira AA, Baptista AM (2012) Experimental and numerical study of the temperature field during creep grinding. Int J Adv Manuf Technol 61:127–134CrossRef
9.
Zurück zum Zitat Zhan YJ, Xu PX (2012) An experimental investigation of temperatures and energy partition in grinding of cemented carbide with a brazed diamond Wheel. Int J Adv Manuf Techonol 61:117–125CrossRef Zhan YJ, Xu PX (2012) An experimental investigation of temperatures and energy partition in grinding of cemented carbide with a brazed diamond Wheel. Int J Adv Manuf Techonol 61:117–125CrossRef
10.
Zurück zum Zitat Brosse A, Naisson P, Hamdi H, Bergheau JM (2008) Temperature measurement and shear flux characterization in grinding using thermography. J Mater Process Technol 201:590–595CrossRef Brosse A, Naisson P, Hamdi H, Bergheau JM (2008) Temperature measurement and shear flux characterization in grinding using thermography. J Mater Process Technol 201:590–595CrossRef
11.
Zurück zum Zitat Kim H, Kim N, Kwak J (2006) Heat flux distribuition model by sequential algorithm of inverse heat transfer for determining workpiece temperature in creep feed grinding. Int J Mach Tool Manu 46:2086–2093CrossRef Kim H, Kim N, Kwak J (2006) Heat flux distribuition model by sequential algorithm of inverse heat transfer for determining workpiece temperature in creep feed grinding. Int J Mach Tool Manu 46:2086–2093CrossRef
12.
Zurück zum Zitat Carvalho RN, Orlande HRB, Colaço MJ (2012) A comparison of the iterative technique and the Kalman filter for the estimation of boundary in grinding. Eng Opt Carvalho RN, Orlande HRB, Colaço MJ (2012) A comparison of the iterative technique and the Kalman filter for the estimation of boundary in grinding. Eng Opt
13.
Zurück zum Zitat González JL (2016) Maximum temperature in dry surface grinding for high peclet number and arbitrary heat flux profile. Math Probl Eng 2016:1–9MathSciNetMATH González JL (2016) Maximum temperature in dry surface grinding for high peclet number and arbitrary heat flux profile. Math Probl Eng 2016:1–9MathSciNetMATH
14.
Zurück zum Zitat Rowe WB (2001) Thermal analysis of high efficiency deep grinding. Int J Mach Tool Manu 41:1–19CrossRef Rowe WB (2001) Thermal analysis of high efficiency deep grinding. Int J Mach Tool Manu 41:1–19CrossRef
15.
Zurück zum Zitat Dogra M, Sharma VS, Dureja JS, Gill SS (2018) Environment-friendly technological advancements to enhance the sustainability in surface grinding- A review. J Clean Prod 197:218–231CrossRef Dogra M, Sharma VS, Dureja JS, Gill SS (2018) Environment-friendly technological advancements to enhance the sustainability in surface grinding- A review. J Clean Prod 197:218–231CrossRef
16.
Zurück zum Zitat Brosse A, Naisson P, Hamdi H, Bergheau JM (2008) Temperature measurement and heat flux characterization in grinding using thermography. J Mater Process Technol 201:590–595CrossRef Brosse A, Naisson P, Hamdi H, Bergheau JM (2008) Temperature measurement and heat flux characterization in grinding using thermography. J Mater Process Technol 201:590–595CrossRef
17.
Zurück zum Zitat Marinescu ID (2004) Tribology of Abrasive Machining Process. William Andrew Publishing, New York Marinescu ID (2004) Tribology of Abrasive Machining Process. William Andrew Publishing, New York
18.
Zurück zum Zitat Yin G, Marinescu I (2017) A heat transfer model of grinding process based on energy partition analysis and grinding fluid cooling application. J Manuf Sci Eng 139:1–11 Yin G, Marinescu I (2017) A heat transfer model of grinding process based on energy partition analysis and grinding fluid cooling application. J Manuf Sci Eng 139:1–11
19.
Zurück zum Zitat Rowe WB (2014) Principles of modern grinding technology. Elsevier, New York Rowe WB (2014) Principles of modern grinding technology. Elsevier, New York
20.
Zurück zum Zitat Malkin S (1989) Grinding Technology: Theory and Applications of Machining With Abrasives. Society of Manufacturing Engineers, Dearborn Malkin S (1989) Grinding Technology: Theory and Applications of Machining With Abrasives. Society of Manufacturing Engineers, Dearborn
21.
Zurück zum Zitat Rowe WB, Morgan MN, Batako A, Jin T (2003) Heat flux distributions and convective heat transfer in deep grinding. Int J Mach Tool Manu 44:1743–3533 Rowe WB, Morgan MN, Batako A, Jin T (2003) Heat flux distributions and convective heat transfer in deep grinding. Int J Mach Tool Manu 44:1743–3533
22.
Zurück zum Zitat Zhu D, Li B, Ding H (2013) An improved grinding temperature model considering grain geometry and distribution. Int J Adv Manuf Technol 67:1393–1406CrossRef Zhu D, Li B, Ding H (2013) An improved grinding temperature model considering grain geometry and distribution. Int J Adv Manuf Technol 67:1393–1406CrossRef
23.
Zurück zum Zitat Rodriguez RL, Lopes JC, Mancini SD, Sanchez LEA, Varasquim FMFA, Volpato RS et al (2019) Contribution for minimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol:1–11 Rodriguez RL, Lopes JC, Mancini SD, Sanchez LEA, Varasquim FMFA, Volpato RS et al (2019) Contribution for minimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol:1–11
24.
Zurück zum Zitat Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, Mello HJ, Aguiar PR et al (2019) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with minimum quantity lubrication technique under various flow rates. Proc Inst Mech Eng B J Eng Manuf 233:1144–1156CrossRef Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, Mello HJ, Aguiar PR et al (2019) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with minimum quantity lubrication technique under various flow rates. Proc Inst Mech Eng B J Eng Manuf 233:1144–1156CrossRef
25.
Zurück zum Zitat Lopes JC, Ventura CE, Fernandes LDM, Tavares AB, Sanchez LE, Mello HJ et al (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341CrossRef Lopes JC, Ventura CE, Fernandes LDM, Tavares AB, Sanchez LE, Mello HJ et al (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341CrossRef
26.
Zurück zum Zitat Fernandes LDM, Lopes JC, Volpato RS, Diniz AE, Oliveira RFM, Aguiar PR et al (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249CrossRef Fernandes LDM, Lopes JC, Volpato RS, Diniz AE, Oliveira RFM, Aguiar PR et al (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249CrossRef
27.
Zurück zum Zitat Morgan MN, Rowe WB, Black SCE, Allanson DR (1998) Effective thermal properties of grinding wheels and grains. Proc Inst Mech Eng B 212:661–669CrossRef Morgan MN, Rowe WB, Black SCE, Allanson DR (1998) Effective thermal properties of grinding wheels and grains. Proc Inst Mech Eng B 212:661–669CrossRef
28.
Zurück zum Zitat Incropera F, DeWitt D, Bergman TL, Lavine A (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley Incropera F, DeWitt D, Bergman TL, Lavine A (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley
29.
Zurück zum Zitat Guo C, Ranganath S, McIntosh D, Elfizy A (2008) Virtual high performance grinding with CBN wheels. CIRP Ann Manuf Technol 57:325–328CrossRef Guo C, Ranganath S, McIntosh D, Elfizy A (2008) Virtual high performance grinding with CBN wheels. CIRP Ann Manuf Technol 57:325–328CrossRef
30.
Zurück zum Zitat Gopan V, Wins KLD (2016) Quantitative analysis of grinding wheel loading using image processing. Proc Technol 25:885–891CrossRef Gopan V, Wins KLD (2016) Quantitative analysis of grinding wheel loading using image processing. Proc Technol 25:885–891CrossRef
31.
Zurück zum Zitat Morgan MN, Jackson AR, Wu H, Baines-Jones V, Batako A, Rowe WB (2008) Optimisation of fluid application in grinding. CIRP Ann Manuf Technol 57:363–366CrossRef Morgan MN, Jackson AR, Wu H, Baines-Jones V, Batako A, Rowe WB (2008) Optimisation of fluid application in grinding. CIRP Ann Manuf Technol 57:363–366CrossRef
32.
Zurück zum Zitat Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding. Int J Mach Tool Manu 49:924–932CrossRef Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding. Int J Mach Tool Manu 49:924–932CrossRef
33.
Zurück zum Zitat Sadeghi MH, Hadad MJ, Tawakoli T, Vesali A, Emami M (2010) An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique. Int J Mater Form 3:241–251CrossRef Sadeghi MH, Hadad MJ, Tawakoli T, Vesali A, Emami M (2010) An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique. Int J Mater Form 3:241–251CrossRef
34.
Zurück zum Zitat Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, Mello HJ, Silva RB, Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916CrossRef Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, Mello HJ, Silva RB, Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916CrossRef
35.
Zurück zum Zitat Yuan Z, Zhu B, Lu Z, Zhang F (2001) Finish surface grinding of titanium alloys. Initiatives of Precision Engineering at the Beginning of a Millennium:481–485 Yuan Z, Zhu B, Lu Z, Zhang F (2001) Finish surface grinding of titanium alloys. Initiatives of Precision Engineering at the Beginning of a Millennium:481–485
Metadaten
Titel
Thermal model for surface grinding application
verfasst von
Lucas de Martini Fernandes
José Claudio Lopes
Fernando Sabino Fonteque Ribeiro
Rubens Gallo
Henrique Cotait Razuk
Luiz Eduardo de Angelo Sanchez
Paulo Roberto de Aguiar
Hamilton José de Mello
Eduardo Carlos Bianchi
Publikationsdatum
24.07.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04101-6

Weitere Artikel der Ausgabe 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.