Skip to main content
Erschienen in: Progress in Additive Manufacturing 1-2/2017

12.04.2017 | Full Research Article

Thermal properties of 3-D printed polylactic acid-metal composites

verfasst von: John Laureto, Julie Tomasi, Julia A. King, Joshua M. Pearce

Erschienen in: Progress in Additive Manufacturing | Ausgabe 1-2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Standard fused filament fabrication (FFF)-based 3-D printers fabricate parts from thermopolymers, such as polylactic acid (PLA). A new range of metal based PLA composites are available providing a novel range of potential engineering materials for such 3-D printers. Currently, limited material data, specifically thermal property characterization is available on these composites. As a result, the application of these materials into functional engineered systems is not possible. This study aims to fill the knowledge gap by quantifying the thermal properties of copperFill, bronzeFill, magnetic iron PLA, and stainless steel PLA composites and provide insight into the technical considerations of FFF composite 3-D printing. Specifically, in this study the correlation of the composite microstructure and printing parameters are explored and the results of thermal conductivity analysis as a function of printed matrix properties are provided. Considering the relative deviation from the filament raw bulk analysis, the results show the printing operation significantly impacts the resultant component density. Experimentally collected thermal conductivity values, however, do not correlate to the theoretical models in the literature and more rigorous quantitative exercises are required to determine true percent porosity to accurately model the effect of air pore volume fraction on thermal conductivity. Despite this limitation, the thermal conductivity values provided can be used to engineer thermal conductivity into 3-D printed parts with these PLA-based composites. Finally, several high-value applications of such 3-D printed materials that look metallic, but have low thermal conductivity are reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
FFF is material extrusion by ASTM Standard F2792-12a. It should be noted that FFF is the generalized non-trademarked equivalent of fused deposition modeling (FDM).
 
Literatur
1.
Zurück zum Zitat Sells E, Smith Z, Bailard S, Bowyer A, Olliver V (2010) RepRap: the replicating rapid prototyper: maximizing customizability by breeding the means of production. Handbook of Research in Mass Customization and Personalization, Forthcoming Sells E, Smith Z, Bailard S, Bowyer A, Olliver V (2010) RepRap: the replicating rapid prototyper: maximizing customizability by breeding the means of production. Handbook of Research in Mass Customization and Personalization, Forthcoming
4.
Zurück zum Zitat Rundle G (2014) A revolution in the making. Affirm Press, South Melbourne Rundle G (2014) A revolution in the making. Affirm Press, South Melbourne
5.
Zurück zum Zitat Moilanen J, Vadén T (2012) Manufacturing in motion: first survey on 3D printing community. Stat Stud Peer Prod 1:6 Moilanen J, Vadén T (2012) Manufacturing in motion: first survey on 3D printing community. Stat Stud Peer Prod 1:6
6.
Zurück zum Zitat Irwin JL, Oppliger DE, Pearce JM, Anzalone G (2015) Evaluation of RepRap 3D Printer Workshops in K-12 STEM. 122nd ASEE 122nd ASEE Conf. Proceedings. Paper ID#12036, 2015 Irwin JL, Oppliger DE, Pearce JM, Anzalone G (2015) Evaluation of RepRap 3D Printer Workshops in K-12 STEM. 122nd ASEE 122nd ASEE Conf. Proceedings. Paper ID#12036, 2015
8.
Zurück zum Zitat Pearce JM, Blair CM, Laciak KJ, Andrews R, Nosrat A, Zelenika-Zovko I (2010) 3-D printing of open source appropriate technologies for self-directed sustainable development. J Sustain Dev 3(4):17CrossRef Pearce JM, Blair CM, Laciak KJ, Andrews R, Nosrat A, Zelenika-Zovko I (2010) 3-D printing of open source appropriate technologies for self-directed sustainable development. J Sustain Dev 3(4):17CrossRef
9.
Zurück zum Zitat Lipson H, Kurman M (2013). Fabricated: the new world of 3D printing. Wiley, New Jersey Lipson H, Kurman M (2013). Fabricated: the new world of 3D printing. Wiley, New Jersey
11.
13.
Zurück zum Zitat Hopkinson N, Dicknes P (2003) Analysis of rapid manufacturing—using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C. J Mech Eng Sci 217(1):31–39. doi:10.1243/095440603762554596 CrossRef Hopkinson N, Dicknes P (2003) Analysis of rapid manufacturing—using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C. J Mech Eng Sci 217(1):31–39. doi:10.​1243/​0954406037625545​96 CrossRef
15.
Zurück zum Zitat Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 1(12):1511–1519. doi:10.1021/sc400093k CrossRef Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 1(12):1511–1519. doi:10.​1021/​sc400093k CrossRef
19.
Zurück zum Zitat Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95(3):1439–1443. doi:10.1063/1.1637705 CrossRef Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95(3):1439–1443. doi:10.​1063/​1.​1637705 CrossRef
21.
26.
Zurück zum Zitat “Evaluating Thermal Conductivity of Gasket Materials” (2014) ASTM Test Method F433-02 (Reapproved 2014) “Evaluating Thermal Conductivity of Gasket Materials” (2014) ASTM Test Method F433-02 (Reapproved 2014)
30.
Zurück zum Zitat Operating Instructions (2016) “Mettler Toledo 33360 + 210260 Density determination kit”. Accessed 24 Jan 2016 Operating Instructions (2016) “Mettler Toledo 33360 + 210260 Density determination kit”. Accessed 24 Jan 2016
32.
Zurück zum Zitat King JA, Johnson BA, Via MD, Ciarkowski CJ (2010) Effects of carbon fillers in thermally conductive polypropylene based resins. Polym Compos 31(3):497–506. doi:10.1002/pc.20830 King JA, Johnson BA, Via MD, Ciarkowski CJ (2010) Effects of carbon fillers in thermally conductive polypropylene based resins. Polym Compos 31(3):497–506. doi:10.​1002/​pc.​20830
35.
Zurück zum Zitat Smith DS, Alzina A, Bourret J, Nait-Ali B, Pennec F, Tessier-Doyen N, Otsu K, Matsubara H, Pierre E, Gozenbach UT (2013) Thermal conductivity of porous materials. J Mater Res 28(17):2260–2272. doi:10.1557/jmr.2013.179 CrossRef Smith DS, Alzina A, Bourret J, Nait-Ali B, Pennec F, Tessier-Doyen N, Otsu K, Matsubara H, Pierre E, Gozenbach UT (2013) Thermal conductivity of porous materials. J Mater Res 28(17):2260–2272. doi:10.​1557/​jmr.​2013.​179 CrossRef
36.
Zurück zum Zitat Landauer R (1952) The electrical resistance of binary metallic mixtures. J Appl Phys 23(7):779–784CrossRef Landauer R (1952) The electrical resistance of binary metallic mixtures. J Appl Phys 23(7):779–784CrossRef
44.
Zurück zum Zitat Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J (2015) Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. Jom 67(3):555–563. doi:10.1007/s11837-015-1300-4 CrossRef Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J (2015) Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. Jom 67(3):555–563. doi:10.​1007/​s11837-015-1300-4 CrossRef
Metadaten
Titel
Thermal properties of 3-D printed polylactic acid-metal composites
verfasst von
John Laureto
Julie Tomasi
Julia A. King
Joshua M. Pearce
Publikationsdatum
12.04.2017
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 1-2/2017
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-017-0019-x

Weitere Artikel der Ausgabe 1-2/2017

Progress in Additive Manufacturing 1-2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.