Skip to main content

2020 | OriginalPaper | Buchkapitel

29. Thermal Properties

verfasst von : Zeyu Liu, Tengfei Luo

Erschienen in: Gallium Oxide

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, an overview of the current research progress on the thermal properties of beta-gallium oxide (β-Ga2O3) is provided. Thermal properties of β-Ga2O3 are of great significance to the device reliability and performance in its potential applications. Previous research through both computational and experimental studies on β-Ga2O3 using various methods is reviewed. The most notable findings are the relatively low and highly anisotropic thermal conductivity. At room temperature, the [010] direction has the highest thermal conductivity of around 25 W/mK, while that in the [100] direction is measured to be the lowest, which is around 13 W/mK. We also make comparison between β-Ga2O3 and GaN, another widely used semiconductor for power electronics. The relatively low thermal conductivity of β-Ga2O3 compared to GaN may present a major challenge for its potential applications. Another important thermal property, heat capacity, of β-Ga2O3 at room temperature is measured to be 18.7 J/mol K. On the other hand, the effective thermal conductivity in β-Ga2O3 thin film is shown to be larger than other gate oxides, providing a possibility of using it as gate dielectrics in GaN device contacts. The thermal properties discussed in this chapter might be useful for thermal management and design of β-Ga2O3 devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2011) T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2011)
2.
Zurück zum Zitat K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, MBE grown Ga2O3 and its power device applications. J. Cryst. Growth 378, 591 (2013)CrossRef K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, MBE grown Ga2O3 and its power device applications. J. Cryst. Growth 378, 591 (2013)CrossRef
3.
Zurück zum Zitat H. Peelaers, C.G. Van de Walle, Brillouin zone and band structure of β‐Ga2O3. Phys. Status Solidi B 252, 828 (2015)CrossRef H. Peelaers, C.G. Van de Walle, Brillouin zone and band structure of β‐Ga2O3. Phys. Status Solidi B 252, 828 (2015)CrossRef
4.
Zurück zum Zitat M.D. Santia, N. Tandon, J. Albrecht, Lattice thermal conductivity in β−Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015)CrossRef M.D. Santia, N. Tandon, J. Albrecht, Lattice thermal conductivity in β−Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015)CrossRef
5.
Zurück zum Zitat G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005) G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005)
6.
Zurück zum Zitat D. Broido, M. Malorny, G. Birner, N. Mingo, D. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007)CrossRef D. Broido, M. Malorny, G. Birner, N. Mingo, D. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007)CrossRef
7.
Zurück zum Zitat A. Ward, D. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)CrossRef A. Ward, D. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)CrossRef
8.
Zurück zum Zitat K. Esfarjani, G. Chen, H.T. Stokes, Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011)CrossRef K. Esfarjani, G. Chen, H.T. Stokes, Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011)CrossRef
9.
Zurück zum Zitat J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011)CrossRef J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011)CrossRef
10.
Zurück zum Zitat T. Luo, J. Garg, J. Shiomi, K. Esfarjani, G. Chen, Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. EPL (Europhys. Lett.) 101, 16001 (2013)CrossRef T. Luo, J. Garg, J. Shiomi, K. Esfarjani, G. Chen, Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. EPL (Europhys. Lett.) 101, 16001 (2013)CrossRef
11.
Zurück zum Zitat Z. Liu, X. Wu, V. Varshney, J. Lee, G. Qin, M. Hu, A.K. Roy, T. Luo, Bond saturation significantly enhances thermal energy transport in two-dimensional pentagonal materials. Nano Energy 45, 1 (2018)CrossRef Z. Liu, X. Wu, V. Varshney, J. Lee, G. Qin, M. Hu, A.K. Roy, T. Luo, Bond saturation significantly enhances thermal energy transport in two-dimensional pentagonal materials. Nano Energy 45, 1 (2018)CrossRef
12.
Zurück zum Zitat A. Maradudin, A. Fein, Scattering of neutrons by an anharmonic crystal. Phys. Rev. 128, 2589 (1962)CrossRef A. Maradudin, A. Fein, Scattering of neutrons by an anharmonic crystal. Phys. Rev. 128, 2589 (1962)CrossRef
13.
Zurück zum Zitat G.P. Srivastava, The Physics of Phonons (CRC Press, 1990) G.P. Srivastava, The Physics of Phonons (CRC Press, 1990)
14.
Zurück zum Zitat A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015)CrossRef A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015)CrossRef
15.
Zurück zum Zitat W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747 (2014)CrossRef W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747 (2014)CrossRef
16.
Zurück zum Zitat P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009) P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)
17.
Zurück zum Zitat J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800 (1986)CrossRef J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800 (1986)CrossRef
18.
Zurück zum Zitat J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRef J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRef
19.
Zurück zum Zitat J. Åhman, G. Svensson, J. Albertsson, A reinvestigation of [beta]-gallium oxide. Acta Crystallogr. C 52, 1336 (1996)CrossRef J. Åhman, G. Svensson, J. Albertsson, A reinvestigation of [beta]-gallium oxide. Acta Crystallogr. C 52, 1336 (1996)CrossRef
20.
Zurück zum Zitat X. Wu, J. Lee, V. Varshney, J.L. Wohlwend, A.K. Roy, T. Luo, Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics–a comparative study with gallium nitride. Sci. Rep. 6, 22504 (2016)CrossRef X. Wu, J. Lee, V. Varshney, J.L. Wohlwend, A.K. Roy, T. Luo, Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics–a comparative study with gallium nitride. Sci. Rep. 6, 22504 (2016)CrossRef
21.
Zurück zum Zitat M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)CrossRef M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)CrossRef
22.
Zurück zum Zitat Z. Guo et al., Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 106, 111909 (2015)CrossRef Z. Guo et al., Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 106, 111909 (2015)CrossRef
23.
Zurück zum Zitat M. Slomski, N. Blumenschein, P. Paskov, Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J. Muth, T. Paskova, J. Appl. Phys. 121, 235104 (2017)CrossRef M. Slomski, N. Blumenschein, P. Paskov, Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J. Muth, T. Paskova, J. Appl. Phys. 121, 235104 (2017)CrossRef
24.
Zurück zum Zitat M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond. Sci. Technol. 30, 024006 (2015) M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond. Sci. Technol. 30, 024006 (2015)
25.
Zurück zum Zitat M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β-Ga2O3 single crystal along [100], [010] and [001]. Semicond. Sci. Technol. 31, 125006 (2016)CrossRef M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β-Ga2O3 single crystal along [100], [010] and [001]. Semicond. Sci. Technol. 31, 125006 (2016)CrossRef
26.
Zurück zum Zitat E.G. Víllora, K. Shimamura, T. Ujiie, K. Aoki, Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature. Appl. Phys. Lett. 92, 202118 (2008)CrossRef E.G. Víllora, K. Shimamura, T. Ujiie, K. Aoki, Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature. Appl. Phys. Lett. 92, 202118 (2008)CrossRef
27.
Zurück zum Zitat A. Ward, D.A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef A. Ward, D.A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef
28.
Zurück zum Zitat L. Lindsay, D. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)CrossRef L. Lindsay, D. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)CrossRef
29.
Zurück zum Zitat L. Lindsay, D. Broido, T. Reinecke, Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)CrossRef L. Lindsay, D. Broido, T. Reinecke, Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)CrossRef
30.
Zurück zum Zitat T. Luo, G. Chen, Nanoscale heat transfer – from computation to experiment. Phys. Chem. Chem. Phys. 15, 3389 (2013)CrossRef T. Luo, G. Chen, Nanoscale heat transfer – from computation to experiment. Phys. Chem. Chem. Phys. 15, 3389 (2013)CrossRef
31.
Zurück zum Zitat L. Lindsay, D. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys.: Condens. Matter 20, 165209 (2008) L. Lindsay, D. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys.: Condens. Matter 20, 165209 (2008)
32.
Zurück zum Zitat R. Guo, X. Wang, B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: substitution and nanoengineering effects. Sci. Rep. 5, 7806 (2015)CrossRef R. Guo, X. Wang, B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: substitution and nanoengineering effects. Sci. Rep. 5, 7806 (2015)CrossRef
33.
Zurück zum Zitat E. Sichel, Thermal conductivity of GaN, 25-360 K. J. Phys. Chem. Solids 38, 330 (1977)CrossRef E. Sichel, Thermal conductivity of GaN, 25-360 K. J. Phys. Chem. Solids 38, 330 (1977)CrossRef
34.
Zurück zum Zitat A. Jeżowski, B.A. Danilchenko, M. Boćkowski, I. Grzegory, S. Krukowski, T. Suski, T. Paszkiewicz, Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Commun. 128, 69 (2003)CrossRef A. Jeżowski, B.A. Danilchenko, M. Boćkowski, I. Grzegory, S. Krukowski, T. Suski, T. Paszkiewicz, Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Commun. 128, 69 (2003)CrossRef
35.
Zurück zum Zitat G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas, ‘Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 246, 287 (2002)CrossRef G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas, ‘Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 246, 287 (2002)CrossRef
36.
Zurück zum Zitat L. Lindsay, D.A. Broido, T.L. Reinecke, Thermal conductivity and large isotope effect in GaN from first principles. Phys. Rev. Lett. 109, 095901 (2012)CrossRef L. Lindsay, D.A. Broido, T.L. Reinecke, Thermal conductivity and large isotope effect in GaN from first principles. Phys. Rev. Lett. 109, 095901 (2012)CrossRef
37.
Zurück zum Zitat A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55, 1202A2 (2016) A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55, 1202A2 (2016)
38.
Zurück zum Zitat P. Jiang, X. Qian, R. Yang, Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev. Sci. Instrum. 88, 074901 (2017)CrossRef P. Jiang, X. Qian, R. Yang, Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev. Sci. Instrum. 88, 074901 (2017)CrossRef
39.
Zurück zum Zitat D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004)CrossRef D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004)CrossRef
40.
Zurück zum Zitat A.J. Schmidt, Optical characterization of thermal transport from the nanoscale to the macroscale. Ph.D. Dissertation, Massachusetts Institute of Technology, 2008 A.J. Schmidt, Optical characterization of thermal transport from the nanoscale to the macroscale. Ph.D. Dissertation, Massachusetts Institute of Technology, 2008
41.
Zurück zum Zitat H. He, M.A. Blanco, R. Pandey, Electronic and thermodynamic properties of β-Ga2O3. Appl. Phys. Lett. 88, 261904 (2006)CrossRef H. He, M.A. Blanco, R. Pandey, Electronic and thermodynamic properties of β-Ga2O3. Appl. Phys. Lett. 88, 261904 (2006)CrossRef
42.
Zurück zum Zitat Z. Galazka et al., On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth 404, 184 (2014)CrossRef Z. Galazka et al., On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth 404, 184 (2014)CrossRef
43.
Zurück zum Zitat D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802 (1990)CrossRef D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802 (1990)CrossRef
44.
Zurück zum Zitat T. Lin, H. Chiu, P. Chang, L. Tung, C. Chen, M. Hong, J. Kwo, W. Tsai, Y. Wang, High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics. Appl. Phys. Lett. 93, 033516 (2008)CrossRef T. Lin, H. Chiu, P. Chang, L. Tung, C. Chen, M. Hong, J. Kwo, W. Tsai, Y. Wang, High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics. Appl. Phys. Lett. 93, 033516 (2008)CrossRef
45.
Zurück zum Zitat J. Johnson et al., Gd2O3/GaN metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 77, 3230 (2000)CrossRef J. Johnson et al., Gd2O3/GaN metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 77, 3230 (2000)CrossRef
46.
Zurück zum Zitat E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605 (1989)CrossRef E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605 (1989)CrossRef
47.
Zurück zum Zitat C.J. Szwejkowski, N.C. Creange, K. Sun, A. Giri, B.F. Donovan, C. Constantin, P.E. Hopkins, Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J. Appl. Phys. 117, 084308 (2015)CrossRef C.J. Szwejkowski, N.C. Creange, K. Sun, A. Giri, B.F. Donovan, C. Constantin, P.E. Hopkins, Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J. Appl. Phys. 117, 084308 (2015)CrossRef
48.
Zurück zum Zitat N. Blumenschein, M. Slomski, P. Paskov, F. Kaess, M. Breckenridge, in Proceedings of SPIE 10533, pp. 105332G, 2018 N. Blumenschein, M. Slomski, P. Paskov, F. Kaess, M. Breckenridge, in Proceedings of SPIE 10533, pp. 105332G, 2018
Metadaten
Titel
Thermal Properties
verfasst von
Zeyu Liu
Tengfei Luo
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-37153-1_29

Neuer Inhalt