Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 2/2020

30.10.2019 | Research Article - Mechanical Engineering

Thermal Response of an Orthotropic Non-charring Ablative Material

verfasst von: Massoud Tatar

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the thermal response of orthotropic carbon–carbon is studied. In the first step, non-charring materials ablation is implemented into a finite volume solver. Carbon–carbon ablative thermal behavior is studied under a time-dependent heat flux. The equilibrium surface thermochemistry model of carbon ablation in air including the diffusion and sublimation along with energy source term, heated wall recession and material properties are all applied in FLUENT 6.3 solver via user-defined functions. Stagnation point temperature, recession and net heat flux for the isotropic case are compared with the published one-dimensional finite difference results. Subsequently, the effects of orthotropic conductivity of the material on surface temperature, ablation mass flux, recession rate of the heated wall and the temperature distribution through the material are described. Results indicate that higher surface temperature and ablation mass flux as well as lower interior temperatures are achieved by the orthotropic material response, compared to the isotropic one. The same conclusion can be made by increasing the ratio of “in-plane” to “through-the-thickness” conductivities. In brief, this work presents a methodology for modeling two- and three-dimensional non-charring material ablation within FLUENT solver to study the thermal response of an anisotropic ablator, sharp geometries and metal–insulator interface where a classic one-dimensional approach is inaccurate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mastanaiah, K.: Correlation of theoretical analysis with experimental data on the performance of charring ablators. J. Heat Transfer 98(1), 139–143 (1976)CrossRef Mastanaiah, K.: Correlation of theoretical analysis with experimental data on the performance of charring ablators. J. Heat Transfer 98(1), 139–143 (1976)CrossRef
2.
Zurück zum Zitat Blackwell, B.: Numerical prediction of one-dimensional ablation using a finite control volume procedure with exponential differencing. Numer. Heat Transf. Part A Appl. 14(1), 17–34 (1988)MATH Blackwell, B.: Numerical prediction of one-dimensional ablation using a finite control volume procedure with exponential differencing. Numer. Heat Transf. Part A Appl. 14(1), 17–34 (1988)MATH
3.
Zurück zum Zitat Potts, R.: Hybrid integral/quasi-steady solution of charring ablation. In: 5th Joint Thermophysics and Heat Transfer Conference 1990, p. 1677 Potts, R.: Hybrid integral/quasi-steady solution of charring ablation. In: 5th Joint Thermophysics and Heat Transfer Conference 1990, p. 1677
4.
Zurück zum Zitat Potts, R.L.: Application of integral methods to ablation charring erosion—a review. J. Spacecr. Rockets 32(2), 200–209 (1995)CrossRef Potts, R.L.: Application of integral methods to ablation charring erosion—a review. J. Spacecr. Rockets 32(2), 200–209 (1995)CrossRef
5.
Zurück zum Zitat Candane, S.R.; Balaji, C.; Venkateshan, S.: Ablation and aero-thermodynamic studies on thermal protection systems of sharp-nosed re-entry vehicles. J. Heat Transf. 129(7), 912–916 (2007)CrossRef Candane, S.R.; Balaji, C.; Venkateshan, S.: Ablation and aero-thermodynamic studies on thermal protection systems of sharp-nosed re-entry vehicles. J. Heat Transf. 129(7), 912–916 (2007)CrossRef
6.
Zurück zum Zitat Chen, Y.; Delichatsios, M.; Motvalli, V.: Material pyrolysis properties, part I: an integral model for one-dimensional transient pyrolysis of charring and non-charring materials. Combust. Sci. Technol. 88(5–6), 309–328 (1993)CrossRef Chen, Y.; Delichatsios, M.; Motvalli, V.: Material pyrolysis properties, part I: an integral model for one-dimensional transient pyrolysis of charring and non-charring materials. Combust. Sci. Technol. 88(5–6), 309–328 (1993)CrossRef
7.
Zurück zum Zitat Chen, Y.; Motevalli, V.; Delichatsios, M.: Material pyrolysis properties, part II: methodology for the derivation of pyrolysis properties for charring materials. Combust. Sci. Technol. 104(4–6), 401–425 (1995)CrossRef Chen, Y.; Motevalli, V.; Delichatsios, M.: Material pyrolysis properties, part II: methodology for the derivation of pyrolysis properties for charring materials. Combust. Sci. Technol. 104(4–6), 401–425 (1995)CrossRef
8.
Zurück zum Zitat Ruperti, N.J.; Cotta, R.M.; Falkenber, C.V.; Su, J.: Engineering analysis of ablative thermal protection for atmospheric reentry: improved lumped formulations and symbolic–numerical computation. Heat Transf. Eng. 25(6), 101–111 (2004)CrossRef Ruperti, N.J.; Cotta, R.M.; Falkenber, C.V.; Su, J.: Engineering analysis of ablative thermal protection for atmospheric reentry: improved lumped formulations and symbolic–numerical computation. Heat Transf. Eng. 25(6), 101–111 (2004)CrossRef
9.
Zurück zum Zitat Amar, A.J.: Modeling of one-dimensional ablation with porous flow using finite control volume procedure. Master of Science Thesis, The Graduate Faculty, North Carolina State University (2006) Amar, A.J.: Modeling of one-dimensional ablation with porous flow using finite control volume procedure. Master of Science Thesis, The Graduate Faculty, North Carolina State University (2006)
10.
Zurück zum Zitat Candane, S.; Balaji, C.; Venkateshan, S.: A comparison of quasi one-dimensional and two-dimensional ablation models for subliming ablators. Heat Transf. Eng. 30(3), 229–236 (2009)CrossRef Candane, S.; Balaji, C.; Venkateshan, S.: A comparison of quasi one-dimensional and two-dimensional ablation models for subliming ablators. Heat Transf. Eng. 30(3), 229–236 (2009)CrossRef
11.
Zurück zum Zitat Dec, J.A.: Three Dimensional Finite Element Ablative Thermal Response Analysis Applied To Heatshield Penetration Design. Georgia Institute of Technology, Atlanta (2010) Dec, J.A.: Three Dimensional Finite Element Ablative Thermal Response Analysis Applied To Heatshield Penetration Design. Georgia Institute of Technology, Atlanta (2010)
12.
Zurück zum Zitat Arnas, A.Ö.; Boettner, D.D.; Tamm, G.; Norberg, S.A.; Whipple, J.R.; Benson, M.J.; VanPoppel, B.P.: On the analysis of the aerodynamic heating problem. J. Heat Transf. 132(12), 124501 (2010)CrossRef Arnas, A.Ö.; Boettner, D.D.; Tamm, G.; Norberg, S.A.; Whipple, J.R.; Benson, M.J.; VanPoppel, B.P.: On the analysis of the aerodynamic heating problem. J. Heat Transf. 132(12), 124501 (2010)CrossRef
13.
Zurück zum Zitat Yang, L.; Zhang, Y.; Chen, J.: An integral approximate solution to ablation of a two-layer composite with a temporal Gaussian heat flux. Heat Transf. Eng. 32(5), 418–428 (2011)CrossRef Yang, L.; Zhang, Y.; Chen, J.: An integral approximate solution to ablation of a two-layer composite with a temporal Gaussian heat flux. Heat Transf. Eng. 32(5), 418–428 (2011)CrossRef
14.
Zurück zum Zitat Ewing, M.E.; Laker, T.S.; Walker, D.T.: Numerical modeling of ablation heat transfer. J. Thermophys. Heat Transf. 27(4), 615–632 (2013)CrossRef Ewing, M.E.; Laker, T.S.; Walker, D.T.: Numerical modeling of ablation heat transfer. J. Thermophys. Heat Transf. 27(4), 615–632 (2013)CrossRef
15.
Zurück zum Zitat Martin, A.; Boyd, I.D.: Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. J. Spacecr. Rockets 52(1), 89–104 (2014)CrossRef Martin, A.; Boyd, I.D.: Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. J. Spacecr. Rockets 52(1), 89–104 (2014)CrossRef
16.
Zurück zum Zitat Chen, Y.-K.; Gökçen, T.; Edquist, K.T.: Two-dimensional ablation and thermal response analyses for mars science laboratory heat shield. J. Spacecr. Rockets 52(1), 134–143 (2014)CrossRef Chen, Y.-K.; Gökçen, T.; Edquist, K.T.: Two-dimensional ablation and thermal response analyses for mars science laboratory heat shield. J. Spacecr. Rockets 52(1), 134–143 (2014)CrossRef
17.
Zurück zum Zitat Qu, Z.; Li, W.; Zhang, J.; Tao, W.: Numerical study of heat conduction with a chemical reaction at the moving frontal surface for a graphite plate. Numer. Heat Transf. Part A Appl. 67(2), 189–209 (2015)CrossRef Qu, Z.; Li, W.; Zhang, J.; Tao, W.: Numerical study of heat conduction with a chemical reaction at the moving frontal surface for a graphite plate. Numer. Heat Transf. Part A Appl. 67(2), 189–209 (2015)CrossRef
18.
Zurück zum Zitat Lachaud, J.; Aspa, Y.; Vignoles, G.: Analytical modeling of the transient ablation of a 3D C/C composite. Int. J. Heat Mass Transf. 115, 1150–1165 (2017)CrossRef Lachaud, J.; Aspa, Y.; Vignoles, G.: Analytical modeling of the transient ablation of a 3D C/C composite. Int. J. Heat Mass Transf. 115, 1150–1165 (2017)CrossRef
19.
Zurück zum Zitat Wang, M.; Zhu, W.: Pore-scale study of heterogeneous chemical reaction for ablation of carbon fibers using the lattice Boltzmann method. Int. J. Heat Mass Transf. 126, 1222–1239 (2018)CrossRef Wang, M.; Zhu, W.: Pore-scale study of heterogeneous chemical reaction for ablation of carbon fibers using the lattice Boltzmann method. Int. J. Heat Mass Transf. 126, 1222–1239 (2018)CrossRef
20.
Zurück zum Zitat Zong, R.; Kang, R.; Hu, Y.; Zhi, Y.: Modeling the pyrolysis study of non-charring polymers under reduced pressure environments. Heat Mass Transf. 54(4), 1135–1144 (2018)CrossRef Zong, R.; Kang, R.; Hu, Y.; Zhi, Y.: Modeling the pyrolysis study of non-charring polymers under reduced pressure environments. Heat Mass Transf. 54(4), 1135–1144 (2018)CrossRef
21.
Zurück zum Zitat Wang, J.; Wang, H.; Sun, J.; Wang, J.: Numerical simulation of control ablation by transpiration cooling. Heat Mass Transf. 43(5), 471–478 (2007)CrossRef Wang, J.; Wang, H.; Sun, J.; Wang, J.: Numerical simulation of control ablation by transpiration cooling. Heat Mass Transf. 43(5), 471–478 (2007)CrossRef
22.
Zurück zum Zitat Qian, W.-Q.; He, K.-F.; Zhou, Y.: Estimation of surface heat flux for ablation and charring of thermal protection material. Heat Mass Transf. 52(7), 1275–1281 (2016)CrossRef Qian, W.-Q.; He, K.-F.; Zhou, Y.: Estimation of surface heat flux for ablation and charring of thermal protection material. Heat Mass Transf. 52(7), 1275–1281 (2016)CrossRef
23.
Zurück zum Zitat Putz, K.E.; Bartlett, E.P.: Heat-transfer and ablation-rate correlations for re-entry heat-shield and nosetip applications. J. Spacecr. Rockets 10(1), 15–22 (1973)CrossRef Putz, K.E.; Bartlett, E.P.: Heat-transfer and ablation-rate correlations for re-entry heat-shield and nosetip applications. J. Spacecr. Rockets 10(1), 15–22 (1973)CrossRef
24.
Zurück zum Zitat Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrog. Energy 41(14), 6004–6012 (2016)CrossRef Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrog. Energy 41(14), 6004–6012 (2016)CrossRef
25.
Zurück zum Zitat Firdaus, S.; Abdullah, M.; Abdullah, M.; Fairuz, Z.: Heat transfer performance of a synthetic jet at various driving frequencies and diaphragm amplitude. Arab. J. Sci. Eng. 44(2), 1043–1055 (2019)CrossRef Firdaus, S.; Abdullah, M.; Abdullah, M.; Fairuz, Z.: Heat transfer performance of a synthetic jet at various driving frequencies and diaphragm amplitude. Arab. J. Sci. Eng. 44(2), 1043–1055 (2019)CrossRef
27.
Zurück zum Zitat Shao, W.; Cui, Z.; Wang, N.; Cheng, L.: Numerical simulation of heat transfer process in cement grate cooler based on dynamic mesh technique. Sci. China Technol. Sci. 59(7), 1065–1070 (2016)CrossRef Shao, W.; Cui, Z.; Wang, N.; Cheng, L.: Numerical simulation of heat transfer process in cement grate cooler based on dynamic mesh technique. Sci. China Technol. Sci. 59(7), 1065–1070 (2016)CrossRef
28.
Zurück zum Zitat Fluent, F.: 6.3 User’s Guide. Fluent Inc, New York (2006) Fluent, F.: 6.3 User’s Guide. Fluent Inc, New York (2006)
Metadaten
Titel
Thermal Response of an Orthotropic Non-charring Ablative Material
verfasst von
Massoud Tatar
Publikationsdatum
30.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 2/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04211-z

Weitere Artikel der Ausgabe 2/2020

Arabian Journal for Science and Engineering 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.