Skip to main content
Erschienen in: Journal of Materials Science 2/2018

05.09.2017 | Energy materials

Thermal transport properties of graphyne nanotube and carbon nanotube hybrid structure: nonequilibrium molecular dynamics simulations

verfasst von: Guangping Lei, Hantao Liu

Erschienen in: Journal of Materials Science | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By performing nonequilibrium molecular dynamics (NEMD) simulations, a GNT/CNT hybrid structure made by graphyne nanotube (GNT) and carbon nanotube (CNT) has been designed and investigated. The influences of length, percentage of GNT, and tensile strain on the thermal transport properties of GNT/CNT hybrid structure are examined. It reveals that the thermal conductivity of hybrid structure increases linearly with the length. Due to the different phonon properties between GNT and CNT, the thermal conductivity of hybrid structure appears as a sharp drop in comparison with the pure CNT. By controlling the percentage of GNT, this hybrid structure exhibits tunable thermal transport behaviors. Moreover, a dramatically thermal rectification phenomenon is observed when applying a tensile strain along the heat flow direction. As the strain rises from 0.0 to 0.06, the rectification factor increases from 2.62 to 12.94%; however, the thermal conductivities reduce by 23.9 and 16.3% for the heat flow direction from GNT to CNT and the opposite direction, respectively. These findings would provide significant insights into the potential applications of GNT/CNT hybrid material in nanodevices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
2.
Zurück zum Zitat Fujii M, Zhang X, Xie H et al (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502CrossRef Fujii M, Zhang X, Xie H et al (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502CrossRef
3.
Zurück zum Zitat Pop E, Mann D, Wang Q, Goodson KE, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRef Pop E, Mann D, Wang Q, Goodson KE, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRef
4.
Zurück zum Zitat Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326CrossRef Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326CrossRef
5.
Zurück zum Zitat Bi K, Chen Y, Yang J, Wang Y, Chen M (2006) Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Phys Lett A 350:150–153CrossRef Bi K, Chen Y, Yang J, Wang Y, Chen M (2006) Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Phys Lett A 350:150–153CrossRef
6.
Zurück zum Zitat Michael CHW, Jang-Yu H (2009) Thermal conductivity of carbon nanotubes with quantum correction via heat capacity. Nanotechnology 20:145401CrossRef Michael CHW, Jang-Yu H (2009) Thermal conductivity of carbon nanotubes with quantum correction via heat capacity. Nanotechnology 20:145401CrossRef
7.
Zurück zum Zitat Thomas JA, Iutzi RM, McGaughey AJH (2010) Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys Rev B 81:045413CrossRef Thomas JA, Iutzi RM, McGaughey AJH (2010) Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys Rev B 81:045413CrossRef
8.
Zurück zum Zitat Chien S-K, Yang Y-T, Chen Co-K (2011) The effects of vacancy defects and nitrogen doping on the thermal conductivity of armchair (10, 10) single-wall carbon nanotubes. Solid State Commun 151:1004–1008CrossRef Chien S-K, Yang Y-T, Chen Co-K (2011) The effects of vacancy defects and nitrogen doping on the thermal conductivity of armchair (10, 10) single-wall carbon nanotubes. Solid State Commun 151:1004–1008CrossRef
9.
Zurück zum Zitat Pan RQ, Xu ZJ, Zhu ZY, Wang ZX (2007) Thermal conductivity of functionalized single-wall carbon nanotubes. Nanotechnology 18:285704CrossRef Pan RQ, Xu ZJ, Zhu ZY, Wang ZX (2007) Thermal conductivity of functionalized single-wall carbon nanotubes. Nanotechnology 18:285704CrossRef
10.
Zurück zum Zitat Wu G, Li B (2007) Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations. Physical Review B 76:085424CrossRef Wu G, Li B (2007) Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations. Physical Review B 76:085424CrossRef
11.
Zurück zum Zitat Ni X, Zhang G, Li B (2011) Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J Phys Condens Matter 23:215301CrossRef Ni X, Zhang G, Li B (2011) Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J Phys Condens Matter 23:215301CrossRef
12.
Zurück zum Zitat Varshney V, Roy AK, Froudakis G, Farmer BL (2011) Molecular dynamics simulations of thermal transport in porous nanotube network structures. Nanoscale 3:3679–3684CrossRef Varshney V, Roy AK, Froudakis G, Farmer BL (2011) Molecular dynamics simulations of thermal transport in porous nanotube network structures. Nanoscale 3:3679–3684CrossRef
13.
Zurück zum Zitat Loh GC, Teo EHT, Tay BK (2012) Tuning the Kapitza resistance in pillared-graphene nanostructures. J Appl Phys 111:013515CrossRef Loh GC, Teo EHT, Tay BK (2012) Tuning the Kapitza resistance in pillared-graphene nanostructures. J Appl Phys 111:013515CrossRef
14.
Zurück zum Zitat Xu L, Wei N, Zheng Y, Fan Z, Wang H-Q, Zheng J-C (2012) Graphene-nanotube 3D networks: intriguing thermal and mechanical properties. J Mater Chem 22:1435–1444CrossRef Xu L, Wei N, Zheng Y, Fan Z, Wang H-Q, Zheng J-C (2012) Graphene-nanotube 3D networks: intriguing thermal and mechanical properties. J Mater Chem 22:1435–1444CrossRef
15.
Zurück zum Zitat Zhao H, Wei D, Zhou L, Shi H, Zhou X (2015) Thermal conductivities of graphyne nanotubes from atomistic simulations. Comput Mater Sci 106:69–75CrossRef Zhao H, Wei D, Zhou L, Shi H, Zhou X (2015) Thermal conductivities of graphyne nanotubes from atomistic simulations. Comput Mater Sci 106:69–75CrossRef
16.
Zurück zum Zitat Hu M, Jing Y, Zhang X (2015) Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys Rev B 91:155408CrossRef Hu M, Jing Y, Zhang X (2015) Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys Rev B 91:155408CrossRef
17.
Zurück zum Zitat Chen X (2015) Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Phys Chem Chem Phys 17:29340–29343CrossRef Chen X (2015) Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Phys Chem Chem Phys 17:29340–29343CrossRef
18.
Zurück zum Zitat Wang YS, Yuan PF, Li M, Jiang WF, Sun Q, Jia Y (2013) Calcium-decorated graphyne nanotubes as promising hydrogen storage media: a first-principles study. J Solid State Chem 197:323–328CrossRef Wang YS, Yuan PF, Li M, Jiang WF, Sun Q, Jia Y (2013) Calcium-decorated graphyne nanotubes as promising hydrogen storage media: a first-principles study. J Solid State Chem 197:323–328CrossRef
19.
Zurück zum Zitat Gong J, Tang Y, Yang H, Yang P (2015) Theoretical investigations of sp-sp2 hybridized capped graphyne nanotubes. Chem Eng Sci 134:217–221CrossRef Gong J, Tang Y, Yang H, Yang P (2015) Theoretical investigations of sp-sp2 hybridized capped graphyne nanotubes. Chem Eng Sci 134:217–221CrossRef
20.
Zurück zum Zitat Coluci VR, Galvao DS, Baughman RH (2004) Theoretical investigation of electromechanical effects fro graphyne carbon nanotubes. J Chem Phys 121:3228–3237CrossRef Coluci VR, Galvao DS, Baughman RH (2004) Theoretical investigation of electromechanical effects fro graphyne carbon nanotubes. J Chem Phys 121:3228–3237CrossRef
21.
Zurück zum Zitat Zhang J, Cui Y, Wang S (2017) Lattice thermal conductivity of δ-graphyne—a molecular dynamics study. Phys E Low dimens Syst Nanostruct 90:116–122CrossRef Zhang J, Cui Y, Wang S (2017) Lattice thermal conductivity of δ-graphyne—a molecular dynamics study. Phys E Low dimens Syst Nanostruct 90:116–122CrossRef
22.
Zurück zum Zitat Zhan H, Zhang Y, Bell JM, Mai Y-W, Gu Y (2014) Structure-mediated thermal transport of monolayer graphene allotropes nanoribbons. Carbon 77:416–423CrossRef Zhan H, Zhang Y, Bell JM, Mai Y-W, Gu Y (2014) Structure-mediated thermal transport of monolayer graphene allotropes nanoribbons. Carbon 77:416–423CrossRef
23.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef
24.
Zurück zum Zitat Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486CrossRef Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486CrossRef
25.
Zurück zum Zitat Liu Y, Hu C, Huang J, Sumpter BG, Qiao R (2015) Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. J Chem Phys 142:244703CrossRef Liu Y, Hu C, Huang J, Sumpter BG, Qiao R (2015) Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. J Chem Phys 142:244703CrossRef
26.
Zurück zum Zitat Wang S, Yang B, Zhang S, Yuan J, Si Y, Chen H (2014) Mechanical properties and failure mechanisms of graphene under a central load. ChemPhysChem 15:2749–2755CrossRef Wang S, Yang B, Zhang S, Yuan J, Si Y, Chen H (2014) Mechanical properties and failure mechanisms of graphene under a central load. ChemPhysChem 15:2749–2755CrossRef
27.
Zurück zum Zitat Yang B, Wang S, Guo Y et al (2014) Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC Adv 4:54677–54683CrossRef Yang B, Wang S, Guo Y et al (2014) Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC Adv 4:54677–54683CrossRef
28.
Zurück zum Zitat Liu Y, Huang J, Yang B, Sumpter BG, Qiao R (2014) Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon 75:169–177CrossRef Liu Y, Huang J, Yang B, Sumpter BG, Qiao R (2014) Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon 75:169–177CrossRef
29.
Zurück zum Zitat He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75:124–132CrossRef He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75:124–132CrossRef
30.
Zurück zum Zitat Wang S, Si Y, Yuan J, Yang B, Chen H (2016) Tunable thermal transport and mechanical properties of graphyne heterojunctions. Phys Chem Chem Phys 18:24210–24218CrossRef Wang S, Si Y, Yuan J, Yang B, Chen H (2016) Tunable thermal transport and mechanical properties of graphyne heterojunctions. Phys Chem Chem Phys 18:24210–24218CrossRef
31.
Zurück zum Zitat Lei G, Cheng H, Liu H, Rao W (2017) Thermal rectification in asymmetric graphyne nanoribbons: a nonequilibrium molecular dynamics study. Mater Lett 189:101–103CrossRef Lei G, Cheng H, Liu H, Rao W (2017) Thermal rectification in asymmetric graphyne nanoribbons: a nonequilibrium molecular dynamics study. Mater Lett 189:101–103CrossRef
32.
Zurück zum Zitat Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRef Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRef
33.
Zurück zum Zitat Liu B, Baimova JA, Reddy CD et al (2014) Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon 79:236–244CrossRef Liu B, Baimova JA, Reddy CD et al (2014) Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon 79:236–244CrossRef
34.
Zurück zum Zitat Bagri A, Kim S-P, Ruoff RS, Shenoy VB (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 11:3917–3921CrossRef Bagri A, Kim S-P, Ruoff RS, Shenoy VB (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 11:3917–3921CrossRef
35.
Zurück zum Zitat Zhou Y, Anglin B, Strachan A (2007) Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics. J Chem Phys 127:184702CrossRef Zhou Y, Anglin B, Strachan A (2007) Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics. J Chem Phys 127:184702CrossRef
36.
Zurück zum Zitat Turney JE, McGaughey AJH, Amon CH (2009) Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys Rev B 79:224305CrossRef Turney JE, McGaughey AJH, Amon CH (2009) Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys Rev B 79:224305CrossRef
37.
Zurück zum Zitat Xu W, Zhang G, Li B (2014) Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J Appl Phys 116:134303CrossRef Xu W, Zhang G, Li B (2014) Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J Appl Phys 116:134303CrossRef
38.
Zurück zum Zitat Rajabpour A, Allaei SV, Kowsary F (2011) Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: a nonequilibrium molecular dynamics study. Appl Phys Lett 99:051917CrossRef Rajabpour A, Allaei SV, Kowsary F (2011) Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: a nonequilibrium molecular dynamics study. Appl Phys Lett 99:051917CrossRef
39.
Zurück zum Zitat Ning W, Lanqing X, Hui-Qiong W, Jin-Cheng Z (2011) Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22:105705CrossRef Ning W, Lanqing X, Hui-Qiong W, Jin-Cheng Z (2011) Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22:105705CrossRef
40.
Zurück zum Zitat Xu Z, Buehler MJ (2009) Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20:185701CrossRef Xu Z, Buehler MJ (2009) Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20:185701CrossRef
41.
Zurück zum Zitat Ren C, Zhang W, Xu Z, Zhu Z, Huai P (2010) Thermal conductivity of single-walled carbon nanotubes under axial stress. J Phys Chem C 114:5786–5791CrossRef Ren C, Zhang W, Xu Z, Zhu Z, Huai P (2010) Thermal conductivity of single-walled carbon nanotubes under axial stress. J Phys Chem C 114:5786–5791CrossRef
42.
Zurück zum Zitat Hu M, Zhang X, Poulikakos D (2013) Anomalous thermal response of silicene to uniaxial stretching. Phys Rev B 87:195417CrossRef Hu M, Zhang X, Poulikakos D (2013) Anomalous thermal response of silicene to uniaxial stretching. Phys Rev B 87:195417CrossRef
43.
Zurück zum Zitat Pei Q, Zhang Y, Sha Z, Shenoy VB (2012) Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 100:101901CrossRef Pei Q, Zhang Y, Sha Z, Shenoy VB (2012) Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 100:101901CrossRef
44.
Zurück zum Zitat Basinski ZS, Duesberry MS, Taylor R (1971) Influence of shear stress on screw dislocations in a model sodium lattice. Can J Phys 49:2160–2180CrossRef Basinski ZS, Duesberry MS, Taylor R (1971) Influence of shear stress on screw dislocations in a model sodium lattice. Can J Phys 49:2160–2180CrossRef
45.
Zurück zum Zitat Pei QX, Zhang YW, Shenoy VB (2010) Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21:115709CrossRef Pei QX, Zhang YW, Shenoy VB (2010) Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21:115709CrossRef
46.
Zurück zum Zitat Yang P, Li X, Zhao Y, Yang H, Wang S (2013) Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons. Phys Lett A 377:2141–2146CrossRef Yang P, Li X, Zhao Y, Yang H, Wang S (2013) Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons. Phys Lett A 377:2141–2146CrossRef
Metadaten
Titel
Thermal transport properties of graphyne nanotube and carbon nanotube hybrid structure: nonequilibrium molecular dynamics simulations
verfasst von
Guangping Lei
Hantao Liu
Publikationsdatum
05.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1548-x

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Science 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.