Skip to main content
Erschienen in:

03.05.2023

Thermally compensated ZnO film bulk acoustic resonator for RF application above 5GHz frequency

verfasst von: Poorvi K. Joshi, Meghana A. Hasamnis, Rajendra M. Patrikar

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a study of the effect of introducing two-series air gap capacitor and tailoring the oxide in thin-film bulk acoustic resonator (FBARs) for thermal compensation at a frequency > 5 GHz. This approach reduces the temperature coefficient of frequency value of ZnO FBAR upto 0.011 ppm\(/^\circ\) C within the industrial temperature range at 5.45 GHz frequency. The quality factor of the compensated FBARs is 1100 with a motional impedance of 38 \(\Omega\). This exceeds significantly the quality factor of uncompensated FBARs (\(\sim\)120). Additionally, we report on the stress and strain required to obtain an optimal design of compensated FBARs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Selén, Y., Parkvall, S., Meyer, M., Osseiran, A.: Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53(1), 202–208 (2015)CrossRef Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Selén, Y., Parkvall, S., Meyer, M., Osseiran, A.: Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53(1), 202–208 (2015)CrossRef
2.
Zurück zum Zitat Iannacci, J.: Rf-mems for 5g applications: a reconfigurable 8-bit power attenuator working up to 110 ghz. part 1: design concept, technology and working principles. Microsyst. Technol. 26(3), 675–687 (2020)CrossRef Iannacci, J.: Rf-mems for 5g applications: a reconfigurable 8-bit power attenuator working up to 110 ghz. part 1: design concept, technology and working principles. Microsyst. Technol. 26(3), 675–687 (2020)CrossRef
3.
Zurück zum Zitat Pillai, G., Zope, A.A., Tsai, J.M.-L., Li, S.-S.: Design and optimization of shf composite fbar resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1864–1873 (2017)CrossRef Pillai, G., Zope, A.A., Tsai, J.M.-L., Li, S.-S.: Design and optimization of shf composite fbar resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1864–1873 (2017)CrossRef
4.
Zurück zum Zitat Melamud, R., Chandorkar, S.A., Kim, B., Lee, H.K., Salvia, J.C., Bahl, G., Hopcroft, M.A., Kenny, T.W.: Temperature-insensitive composite micromechanical resonators. J. Microelectromechanical Syst. 18(6), 1409–1419 (2009)CrossRef Melamud, R., Chandorkar, S.A., Kim, B., Lee, H.K., Salvia, J.C., Bahl, G., Hopcroft, M.A., Kenny, T.W.: Temperature-insensitive composite micromechanical resonators. J. Microelectromechanical Syst. 18(6), 1409–1419 (2009)CrossRef
5.
Zurück zum Zitat Faizan, M., Villanueva, L.G.: Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement. J. Microelectromechanical Syst. 30(3), 369–374 (2021)CrossRef Faizan, M., Villanueva, L.G.: Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement. J. Microelectromechanical Syst. 30(3), 369–374 (2021)CrossRef
6.
Zurück zum Zitat Pandit, M., Mustafazade, A., Sobreviela, G., Zhao, C., Zou, X., Seshia, A.A.: Experimental observation of temperature and pressure induced frequency fluctuations in silicon mems resonators. J. Microelectromechanical Syst. 30(4), 500–505 (2021)CrossRef Pandit, M., Mustafazade, A., Sobreviela, G., Zhao, C., Zou, X., Seshia, A.A.: Experimental observation of temperature and pressure induced frequency fluctuations in silicon mems resonators. J. Microelectromechanical Syst. 30(4), 500–505 (2021)CrossRef
7.
Zurück zum Zitat Han, J., Xiao, Y., Chen, W., Jia, W., Zhu, K., Wu, G.: “Jmems letters. 1pt temperature compensated bulk-mode capacitive mems resonators with \(\pm\)16 ppm temperature stability over industrial temperature range,” J. Microelectromechanical Syst. (2022) Han, J., Xiao, Y., Chen, W., Jia, W., Zhu, K., Wu, G.: “Jmems letters. 1pt temperature compensated bulk-mode capacitive mems resonators with \(\pm\)16 ppm temperature stability over industrial temperature range,” J. Microelectromechanical Syst. (2022)
8.
Zurück zum Zitat Salvia, J.C., Melamud, R., Chandorkar, S.A., Lord, S.F., Kenny, T.W.: Real-time temperature compensation of mems oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromechanical Syst. 19(1), 192–201 (2009)CrossRef Salvia, J.C., Melamud, R., Chandorkar, S.A., Lord, S.F., Kenny, T.W.: Real-time temperature compensation of mems oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromechanical Syst. 19(1), 192–201 (2009)CrossRef
9.
Zurück zum Zitat Wojciechowski, K.E., Olsson, R.H.: A fully integrated oven controlled microelectromechanical oscillatorpart II: characterization and measurement. J. Microelectromechanical Syst. 24(6), 1795–1802 (2015)CrossRef Wojciechowski, K.E., Olsson, R.H.: A fully integrated oven controlled microelectromechanical oscillatorpart II: characterization and measurement. J. Microelectromechanical Syst. 24(6), 1795–1802 (2015)CrossRef
10.
Zurück zum Zitat You, W., Pei, B., Sun, K., Zhang, L., Yang, H., Li, X.: Oven controlled n++ [1 0 0] length-extensional mode silicon resonator with frequency stability of 1 ppm over industrial temperature range. J. Micromechanics Microengineering 27(9), 095002 (2017)CrossRef You, W., Pei, B., Sun, K., Zhang, L., Yang, H., Li, X.: Oven controlled n++ [1 0 0] length-extensional mode silicon resonator with frequency stability of 1 ppm over industrial temperature range. J. Micromechanics Microengineering 27(9), 095002 (2017)CrossRef
11.
Zurück zum Zitat Xu, C., Segovia-Fernandez, J., Kim, H.J., Piazza, G.: Temperature-stable piezoelectric mems resonators using integrated ovens and simple resistive feedback circuits. J. Microelectromechanical Syst. 26(1), 187–195 (2016)CrossRef Xu, C., Segovia-Fernandez, J., Kim, H.J., Piazza, G.: Temperature-stable piezoelectric mems resonators using integrated ovens and simple resistive feedback circuits. J. Microelectromechanical Syst. 26(1), 187–195 (2016)CrossRef
12.
Zurück zum Zitat Ho, G.K., Sundaresan, K., Pourkamali, S., Ayazi, F.: “Low-motional-impedance highly-tunable i/sup 2/resonators for temperature-compensated reference oscillators,” in 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005. IEEE, pp. 116–120 (2005) Ho, G.K., Sundaresan, K., Pourkamali, S., Ayazi, F.: “Low-motional-impedance highly-tunable i/sup 2/resonators for temperature-compensated reference oscillators,” in 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005. IEEE, pp. 116–120 (2005)
13.
Zurück zum Zitat Sundaresan, K., Ho, G.K., Pourkamali, S., Ayazi, F.: Electronically temperature compensated silicon bulk acoustic resonator reference oscillators. IEEE J. Solid-State Circuits 42(6), 1425–1434 (2007)CrossRef Sundaresan, K., Ho, G.K., Pourkamali, S., Ayazi, F.: Electronically temperature compensated silicon bulk acoustic resonator reference oscillators. IEEE J. Solid-State Circuits 42(6), 1425–1434 (2007)CrossRef
14.
Zurück zum Zitat Wu, G., Xu, J., Zhang, X., Wang, N., Yan, D., Lim, J.L.K., Zhu, Y., Li, W., Gu, Y.: Wafer-level vacuum-packaged high-performance aln-on-soi piezoelectric resonator for sub-100-mhz oscillator applications. IEEE Trans. Ind. Electron. 65(4), 3576–3584 (2017)CrossRef Wu, G., Xu, J., Zhang, X., Wang, N., Yan, D., Lim, J.L.K., Zhu, Y., Li, W., Gu, Y.: Wafer-level vacuum-packaged high-performance aln-on-soi piezoelectric resonator for sub-100-mhz oscillator applications. IEEE Trans. Ind. Electron. 65(4), 3576–3584 (2017)CrossRef
15.
Zurück zum Zitat Zaliasl, S., Salvia, J.C., Hill, G.C., Chen, L., Joo, K., Palwai, R., Arumugam, N., Phadke, M., Mukherjee, S., Lee, H.-C., et al.: A 3 ppm 1.5\(\times\) 0.8 \(mm^2\) 1.0 \(\mu\)a 32.768 khz mems-based oscillator. IEEE J. Solid-State Circuits 50(1), 291–302 (2014)CrossRef Zaliasl, S., Salvia, J.C., Hill, G.C., Chen, L., Joo, K., Palwai, R., Arumugam, N., Phadke, M., Mukherjee, S., Lee, H.-C., et al.: A 3 ppm 1.5\(\times\) 0.8 \(mm^2\) 1.0 \(\mu\)a 32.768 khz mems-based oscillator. IEEE J. Solid-State Circuits 50(1), 291–302 (2014)CrossRef
16.
Zurück zum Zitat Ruffieux, D., Krummenacher, F., Pezous, A., Spinola-Durante, G.: Silicon resonator based 3.2 \(\mu\) w real time clock with \(\pm\)10 ppm frequency accuracy. IEEE J. Solid-State Circuits 45(1), 224–234 (2009)CrossRef Ruffieux, D., Krummenacher, F., Pezous, A., Spinola-Durante, G.: Silicon resonator based 3.2 \(\mu\) w real time clock with \(\pm\)10 ppm frequency accuracy. IEEE J. Solid-State Circuits 45(1), 224–234 (2009)CrossRef
17.
Zurück zum Zitat Wang, J., Lakin, K.: Low-temperature coefficient bulk acoustic wave composite resonators. Appl. Phys. Lett. 40(4), 308–310 (1982)CrossRef Wang, J., Lakin, K.: Low-temperature coefficient bulk acoustic wave composite resonators. Appl. Phys. Lett. 40(4), 308–310 (1982)CrossRef
18.
Zurück zum Zitat Baborowski, J., Bourgeois, C., Pezous, A., Muller, C., Dubois, M.-A.: “Piezoelectrically activated silicon resonators,” in IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE 2007, 1210–1213 (2007) Baborowski, J., Bourgeois, C., Pezous, A., Muller, C., Dubois, M.-A.: “Piezoelectrically activated silicon resonators,” in IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE 2007, 1210–1213 (2007)
19.
Zurück zum Zitat Melamud, R., Kim, B., Chandorkar, S.A., Hopcroft, M.A., Agarwal, M., Jha, C.M., Kenny, T.W.: Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107 (2007)CrossRef Melamud, R., Kim, B., Chandorkar, S.A., Hopcroft, M.A., Agarwal, M., Jha, C.M., Kenny, T.W.: Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107 (2007)CrossRef
20.
Zurück zum Zitat Shahmohammadi, M., Harrington, B.P., Abdolvand, R.: “Zero temperature coefficient of frequency in extensional-mode highly doped silicon microresonators,” in IEEE International Frequency Control Symposium Proceedings. IEEE 2012, 1–4 (2012) Shahmohammadi, M., Harrington, B.P., Abdolvand, R.: “Zero temperature coefficient of frequency in extensional-mode highly doped silicon microresonators,” in IEEE International Frequency Control Symposium Proceedings. IEEE 2012, 1–4 (2012)
21.
Zurück zum Zitat Jaakkola, A., Prunnila, M., Pensala, T., Dekker, J., Pekko, P.: Determination of doping and temperature-dependent elastic constants of degenerately doped silicon from mems resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(7), 1063–1074 (2014)CrossRef Jaakkola, A., Prunnila, M., Pensala, T., Dekker, J., Pekko, P.: Determination of doping and temperature-dependent elastic constants of degenerately doped silicon from mems resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(7), 1063–1074 (2014)CrossRef
22.
Zurück zum Zitat Hsu, W.-T., Nguyen, C.-C.: “Geometric stress compensation for enhanced thermal stability in micromechanical resonators,” in IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), vol. 1. IEEE 1998, 945–948 (1998) Hsu, W.-T., Nguyen, C.-C.: “Geometric stress compensation for enhanced thermal stability in micromechanical resonators,” in IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), vol. 1. IEEE 1998, 945–948 (1998)
23.
Zurück zum Zitat Hsu, W.-T., Clark, J. R., Nguyen, C.-C.: “Mechanically temperature-compensated flexural-mode micromechanical resonators,” in International Electron Devices Meeting: Technical Digest. IEDM (Cat. No. 00CH37138). IEEE 2000, 399–402 (2000) Hsu, W.-T., Clark, J. R., Nguyen, C.-C.: “Mechanically temperature-compensated flexural-mode micromechanical resonators,” in International Electron Devices Meeting: Technical Digest. IEDM (Cat. No. 00CH37138). IEEE 2000, 399–402 (2000)
24.
Zurück zum Zitat Samarao, A., Casinovi, G., Ayazi, F.: “Passive tcf compensation in high q silicon micromechanical resonators,” in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, pp. 116–119 (2010) Samarao, A., Casinovi, G., Ayazi, F.: “Passive tcf compensation in high q silicon micromechanical resonators,” in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, pp. 116–119 (2010)
25.
Zurück zum Zitat Pinkett, S.L., Hunt, W.D., Barber, B.P., Gammel, P.L.: Determination of zno temperature coefficients using thin film bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1491–1496 (2002)CrossRef Pinkett, S.L., Hunt, W.D., Barber, B.P., Gammel, P.L.: Determination of zno temperature coefficients using thin film bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1491–1496 (2002)CrossRef
26.
Zurück zum Zitat Pang, W., Yu, H., Zhang, H., Kim, E.S.: Temperature-compensated film bulk acoustic resonator above 2 ghz. IEEE Electron Device Lett. 26(6), 369–371 (2005)CrossRef Pang, W., Yu, H., Zhang, H., Kim, E.S.: Temperature-compensated film bulk acoustic resonator above 2 ghz. IEEE Electron Device Lett. 26(6), 369–371 (2005)CrossRef
27.
Zurück zum Zitat Pang, W., Ruby, R.C., Parker, R., Fisher, P.W., Unkrich, M.A., Larson, J.D.: A temperature-stable film bulk acoustic wave oscillator. IEEE Electron Device Lett. 29(4), 315–318 (2008)CrossRef Pang, W., Ruby, R.C., Parker, R., Fisher, P.W., Unkrich, M.A., Larson, J.D.: A temperature-stable film bulk acoustic wave oscillator. IEEE Electron Device Lett. 29(4), 315–318 (2008)CrossRef
28.
Zurück zum Zitat Liu, Y., Sun, K., Ma, J., Yu, Z., Lan, Z.: Design and fabrication of temperature-compensated film bulk acoustic resonator filter based on the stress compensation effect. Coatings 12(8), 1126 (2022)CrossRef Liu, Y., Sun, K., Ma, J., Yu, Z., Lan, Z.: Design and fabrication of temperature-compensated film bulk acoustic resonator filter based on the stress compensation effect. Coatings 12(8), 1126 (2022)CrossRef
29.
Zurück zum Zitat Hassanien, A.E., Lu, R., Gong, S.: “A near zero tcf acoustic resonator with high electromechanical coupling of 13.5% at 3.5 ghz,” in IEEE MTT-S International Microwave Symposium (IMS). IEEE 2021, 218–221 (2021) Hassanien, A.E., Lu, R., Gong, S.: “A near zero tcf acoustic resonator with high electromechanical coupling of 13.5% at 3.5 ghz,” in IEEE MTT-S International Microwave Symposium (IMS). IEEE 2021, 218–221 (2021)
30.
Zurück zum Zitat Zou, Q., Lee, D., Bi, F., Ruby, R., Small, M., Ortiz, S., Oshmyansky, Y., Kaitila, J.: “High coupling coefficient temperature compensated fbar resonator for oscillator application with wide pulling range,” in IEEE International Frequency Control Symposium. IEEE 2010, 646–651 (2010) Zou, Q., Lee, D., Bi, F., Ruby, R., Small, M., Ortiz, S., Oshmyansky, Y., Kaitila, J.: “High coupling coefficient temperature compensated fbar resonator for oscillator application with wide pulling range,” in IEEE International Frequency Control Symposium. IEEE 2010, 646–651 (2010)
31.
Zurück zum Zitat Vanhelmont, F., Philippe, P., Jansman, A., Milsom, R., Ruigrok, J., Oruk, A.: “4d-3 a 2 ghz reference oscillator incorporating a temperature compensated baw resonator,” in IEEE Ultrasonics Symposium. IEEE 2006, 333–336 (2006) Vanhelmont, F., Philippe, P., Jansman, A., Milsom, R., Ruigrok, J., Oruk, A.: “4d-3 a 2 ghz reference oscillator incorporating a temperature compensated baw resonator,” in IEEE Ultrasonics Symposium. IEEE 2006, 333–336 (2006)
Metadaten
Titel
Thermally compensated ZnO film bulk acoustic resonator for RF application above 5GHz frequency
verfasst von
Poorvi K. Joshi
Meghana A. Hasamnis
Rajendra M. Patrikar
Publikationsdatum
03.05.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02044-6