Skip to main content

2017 | OriginalPaper | Buchkapitel

11. Thermo-kinetic Phenomena Occurring in Glasses: Their Formalism and Mutual Relationships

verfasst von : Roman Svoboda, Jiří Málek, Jaroslav Šesták

Erschienen in: Thermal Physics and Thermal Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present chapter, the macroscopic (recorded by methods of thermal analysis) manifestation of the structural relaxation and cold crystallization phenomena occurring in the glassy matrices will be discussed. Present formalism and methodological background are reviewed. Equilibrium viscous flow is introduced as an interconnecting element between the two phenomena. The consequent part then deals with the rheological and viscosity-related aspects of the glassy state itself. Viscosity behavior in view of so-called fragility is renovated in terms of thermal sensitivity. The chapter contains 98 references.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29:240–253CrossRef Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29:240–253CrossRef
2.
Zurück zum Zitat Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–497CrossRef Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–497CrossRef
3.
Zurück zum Zitat Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16CrossRef Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16CrossRef
4.
Zurück zum Zitat Scherer GW (1986) Relaxation in glass and composites. Wiley Scherer GW (1986) Relaxation in glass and composites. Wiley
5.
Zurück zum Zitat McKenna GB (1989) Glass formation and glassy behavior. In: Comprehensive polymer science 2, pergamon McKenna GB (1989) Glass formation and glassy behavior. In: Comprehensive polymer science 2, pergamon
6.
Zurück zum Zitat Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Sol 169:211–266CrossRef Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Sol 169:211–266CrossRef
7.
Zurück zum Zitat Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glass forming liquids and amorphous solids. J Appl Phys 88:3113–3157CrossRef Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glass forming liquids and amorphous solids. J Appl Phys 88:3113–3157CrossRef
8.
Zurück zum Zitat Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20:703–760CrossRef Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20:703–760CrossRef
9.
Zurück zum Zitat Liška M, Chromčíková M (2005) Simultaneous volume and enthalpy relaxation. J Therm Anal Calorim 81:125–129CrossRef Liška M, Chromčíková M (2005) Simultaneous volume and enthalpy relaxation. J Therm Anal Calorim 81:125–129CrossRef
10.
Zurück zum Zitat Svoboda R (2013) Relaxation processes in Se-rich chalcogenide glasses: Effect of characteristic structural entities. Acta Mater 61:4534–4541CrossRef Svoboda R (2013) Relaxation processes in Se-rich chalcogenide glasses: Effect of characteristic structural entities. Acta Mater 61:4534–4541CrossRef
11.
Zurück zum Zitat Hodge IM, Berens AR (1982) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules 15:762–770CrossRef Hodge IM, Berens AR (1982) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules 15:762–770CrossRef
12.
Zurück zum Zitat Hodge IM, Berens AR (1985) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 5. Mathematical modeling of nonthermal presaging perturbations. Macromolecules 18:1980–1984CrossRef Hodge IM, Berens AR (1985) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 5. Mathematical modeling of nonthermal presaging perturbations. Macromolecules 18:1980–1984CrossRef
13.
Zurück zum Zitat Kohlrausch F (1866) Beitrage zur Kenntniss der elastichen Nachwirkung. Ann Phys Chem 128:1–20CrossRef Kohlrausch F (1866) Beitrage zur Kenntniss der elastichen Nachwirkung. Ann Phys Chem 128:1–20CrossRef
14.
Zurück zum Zitat Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRef Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRef
15.
Zurück zum Zitat Rekhson SM, Bulaeva AV, Mazurin OV (1971) Change in linear dimensions and viscosity of window glass during stabilization. Izv Akad Nauk SSSR Neorg Mater 7:714–715 Rekhson SM, Bulaeva AV, Mazurin OV (1971) Change in linear dimensions and viscosity of window glass during stabilization. Izv Akad Nauk SSSR Neorg Mater 7:714–715
16.
Zurück zum Zitat DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:16–21CrossRef DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:16–21CrossRef
17.
Zurück zum Zitat Hodge IM (1987) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules 20:2897–2908CrossRef Hodge IM (1987) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules 20:2897–2908CrossRef
18.
Zurück zum Zitat Kovacs AJ (1963) Transition vitreuse dans les polymers amorphes – Etude phenomenologique. Fortschr Hochpolym Forsch 3:394–507CrossRef Kovacs AJ (1963) Transition vitreuse dans les polymers amorphes – Etude phenomenologique. Fortschr Hochpolym Forsch 3:394–507CrossRef
19.
Zurück zum Zitat Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRef Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRef
20.
Zurück zum Zitat Hodge IM (1997) Adam-Gibbs formulation of enthalpy relaxation near the glass transition. J Res Natl Inst Stand Technol 102:195–205CrossRef Hodge IM (1997) Adam-Gibbs formulation of enthalpy relaxation near the glass transition. J Res Natl Inst Stand Technol 102:195–205CrossRef
21.
Zurück zum Zitat Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRef Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRef
22.
Zurück zum Zitat Ngai KL (1994) Disordered effects in relaxation processes. Springer Ngai KL (1994) Disordered effects in relaxation processes. Springer
23.
Zurück zum Zitat Rendell RW, Ngai KL, Fong GR, Aklonis JJ (1987) Volume recovery near the glass-transition temperature in polyvinylacetate—predictions of a coupling model. Macromolecules 20:1070–1083CrossRef Rendell RW, Ngai KL, Fong GR, Aklonis JJ (1987) Volume recovery near the glass-transition temperature in polyvinylacetate—predictions of a coupling model. Macromolecules 20:1070–1083CrossRef
24.
Zurück zum Zitat Svoboda R, Málek J (2013) Description of macroscopic relaxation dynamics in glasses. J Non-Cryst Solids 378:186–195CrossRef Svoboda R, Málek J (2013) Description of macroscopic relaxation dynamics in glasses. J Non-Cryst Solids 378:186–195CrossRef
25.
Zurück zum Zitat Svoboda R (2014) How to determine activation energy of glass transition. J Therm Anal Calorim 118:1721–1732CrossRef Svoboda R (2014) How to determine activation energy of glass transition. J Therm Anal Calorim 118:1721–1732CrossRef
26.
Zurück zum Zitat Svoboda R (2014) Utilization of “q +/q− = const.” DSC cycles for enthalpy relaxation studies. Eur Polym J 59:180–188CrossRef Svoboda R (2014) Utilization of “q +/q = const.” DSC cycles for enthalpy relaxation studies. Eur Polym J 59:180–188CrossRef
27.
Zurück zum Zitat Svoboda R (2015) Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by error data-distortive operations. J Non-Cryst Sol 408:115–122CrossRef Svoboda R (2015) Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by error data-distortive operations. J Non-Cryst Sol 408:115–122CrossRef
28.
Zurück zum Zitat Svoboda R (2015) Novel equation to determine activation energy of enthalpy relaxation. J Therm Anal Calorim 121:895–899CrossRef Svoboda R (2015) Novel equation to determine activation energy of enthalpy relaxation. J Therm Anal Calorim 121:895–899CrossRef
29.
Zurück zum Zitat Svoboda R, Čičmanec P, Málek J (2013) Kissinger equation versus glass transition phenomenology. J Therm Anal. Cal 114:285–293CrossRef Svoboda R, Čičmanec P, Málek J (2013) Kissinger equation versus glass transition phenomenology. J Therm Anal. Cal 114:285–293CrossRef
30.
Zurück zum Zitat Svoboda R, Málek J (2013) Glass transition in polymers: (in)correct determination of activation energy. Polymer 54:1504–1511CrossRef Svoboda R, Málek J (2013) Glass transition in polymers: (in)correct determination of activation energy. Polymer 54:1504–1511CrossRef
31.
Zurück zum Zitat Málek J, Svoboda R, Pustková P, Čičmanec P (2009) Volume and enthalpy relaxation of a-Se in the glass transition region. J Non-Cryst Solids 355:264–272CrossRef Málek J, Svoboda R, Pustková P, Čičmanec P (2009) Volume and enthalpy relaxation of a-Se in the glass transition region. J Non-Cryst Solids 355:264–272CrossRef
32.
Zurück zum Zitat Hodge IM (1991) Adam-Gibbs formulation of non-linear enthalpy relaxation. J Non-Cryst Sol 131–133:435–441CrossRef Hodge IM (1991) Adam-Gibbs formulation of non-linear enthalpy relaxation. J Non-Cryst Sol 131–133:435–441CrossRef
33.
Zurück zum Zitat Chromčiková M, Liška M (2006) Simple relaxation model of the reversible part of the StepScan DSC record of glass transition. J Therm Anal Calorim 84:703–708CrossRef Chromčiková M, Liška M (2006) Simple relaxation model of the reversible part of the StepScan DSC record of glass transition. J Therm Anal Calorim 84:703–708CrossRef
34.
Zurück zum Zitat Dyre JC, Christensen T, Olsen NB (2006) Elastic models for the non-Arhenius viscosity of glass-forming liquids. J Non-Cryst Sol 352:4635–4642CrossRef Dyre JC, Christensen T, Olsen NB (2006) Elastic models for the non-Arhenius viscosity of glass-forming liquids. J Non-Cryst Sol 352:4635–4642CrossRef
35.
Zurück zum Zitat Martinez LM, Angell CA (2001) A thermodynamic connection to the fragility of glass-forming liquids. Nature 410:663–667CrossRef Martinez LM, Angell CA (2001) A thermodynamic connection to the fragility of glass-forming liquids. Nature 410:663–667CrossRef
36.
Zurück zum Zitat Yang G, Gulbiten O, Gueguen Y, Bureau B, Sangleboeuf JC, Roiland C, King EA, Lucas P (2012) Fragile-strong behavior in the AsxSe1−x glass forming system in relation to structural dimensionality. Phys Rev B 85:144107CrossRef Yang G, Gulbiten O, Gueguen Y, Bureau B, Sangleboeuf JC, Roiland C, King EA, Lucas P (2012) Fragile-strong behavior in the AsxSe1−x glass forming system in relation to structural dimensionality. Phys Rev B 85:144107CrossRef
37.
Zurück zum Zitat Svoboda R, Málek J (2015) Kinetic fragility of Se-rich chalcogenide glasses. J Non-Cryst Sol 419:39–44CrossRef Svoboda R, Málek J (2015) Kinetic fragility of Se-rich chalcogenide glasses. J Non-Cryst Sol 419:39–44CrossRef
38.
Zurück zum Zitat Svoboda R, Honcová P, Málek J (2010) Apparent activation energy of structural relaxation for Se70Te30 glass. J Non-Cryst Solids 356:165–168CrossRef Svoboda R, Honcová P, Málek J (2010) Apparent activation energy of structural relaxation for Se70Te30 glass. J Non-Cryst Solids 356:165–168CrossRef
39.
Zurück zum Zitat Svoboda R, Málek J (2014) Nucleation in As2Se3 glass studied by DSC. Thermochim Acta 593:16–21CrossRef Svoboda R, Málek J (2014) Nucleation in As2Se3 glass studied by DSC. Thermochim Acta 593:16–21CrossRef
40.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change I—general theory. J Chem Phys 7:1103–1112CrossRef Avrami M (1939) Kinetics of phase change I—general theory. J Chem Phys 7:1103–1112CrossRef
41.
Zurück zum Zitat Avrami M (1940) Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys 7:212–224CrossRef Avrami M (1940) Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys 7:212–224CrossRef
42.
Zurück zum Zitat Avrami M (1941) Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys 7:177–184CrossRef Avrami M (1941) Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys 7:177–184CrossRef
43.
Zurück zum Zitat Johnson WA, Mehl KF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng 135:416–442 Johnson WA, Mehl KF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng 135:416–442
44.
Zurück zum Zitat Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRef Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRef
45.
Zurück zum Zitat Henderson DW (1979) Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal 15:325–331; and (1979) Thermal analysis of non-isothermal crystallization kinetics in glass-forming liquids. J Non-Cryst Sol 30:301–315 Henderson DW (1979) Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal 15:325–331; and (1979) Thermal analysis of non-isothermal crystallization kinetics in glass-forming liquids. J Non-Cryst Sol 30:301–315
46.
Zurück zum Zitat Kemeny T, Šesták J (1987) Comparison of crystallization kinetics determined by isothermal and nonisothermal methods. Thermochim Acta 110:113–121 Kemeny T, Šesták J (1987) Comparison of crystallization kinetics determined by isothermal and nonisothermal methods. Thermochim Acta 110:113–121
47.
Zurück zum Zitat Šesták J (1984) Modeling reaction mechanism by use of Euclidean and fractal geometry, Chapter 10 in his book: thermophysical properties of solids, their measurements and theoretical analysis. Elsevier, pp 276–314 (ISBN 13978-0-444-51954-2); and (2015) The Šesták-Berggren equation: now questioned but formerly celebrated—what is right? J Therm Anal Calorim. doi:10.1007/s10973-015-4998-x Šesták J (1984) Modeling reaction mechanism by use of Euclidean and fractal geometry, Chapter 10 in his book: thermophysical properties of solids, their measurements and theoretical analysis. Elsevier, pp 276–314 (ISBN 13978-0-444-51954-2); and (2015) The Šesták-Berggren equation: now questioned but formerly celebrated—what is right? J Therm Anal Calorim. doi:10.​1007/​s10973-015-4998-x
48.
Zurück zum Zitat Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, Wiley Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, Wiley
49.
Zurück zum Zitat Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176CrossRef Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176CrossRef
50.
Zurück zum Zitat Svoboda R, Málek J (2014) Is the original Kissinger equation obsolete today? J Therm Anal Calorim 115:1961–1967CrossRef Svoboda R, Málek J (2014) Is the original Kissinger equation obsolete today? J Therm Anal Calorim 115:1961–1967CrossRef
51.
Zurück zum Zitat Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRef Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRef
52.
Zurück zum Zitat Perez-Maqueda LA, Criado JM, Malek J (2003) Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Sol 320:84–91CrossRef Perez-Maqueda LA, Criado JM, Malek J (2003) Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Sol 320:84–91CrossRef
53.
Zurück zum Zitat Málek J (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239–253CrossRef Málek J (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239–253CrossRef
54.
Zurück zum Zitat Svoboda R, Málek J (2011) Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta 526:237–251CrossRef Svoboda R, Málek J (2011) Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta 526:237–251CrossRef
55.
Zurück zum Zitat Svoboda R, Málek J (2014) Crystallization kinetics of a-Se, part 2: deconvolution of a complex process—the final answer. J Therm Anal Cal 115:81–91CrossRef Svoboda R, Málek J (2014) Crystallization kinetics of a-Se, part 2: deconvolution of a complex process—the final answer. J Therm Anal Cal 115:81–91CrossRef
56.
Zurück zum Zitat Perejón A, Sánchéz-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B 115:1780–1791CrossRef Perejón A, Sánchéz-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B 115:1780–1791CrossRef
57.
Zurück zum Zitat Svoboda R, Málek J (2013) Applicability of Fraser-Suzuki function in kinetic analysis of complex processes. J Therm Anal Cal 111:1045–1056CrossRef Svoboda R, Málek J (2013) Applicability of Fraser-Suzuki function in kinetic analysis of complex processes. J Therm Anal Cal 111:1045–1056CrossRef
58.
Zurück zum Zitat Opferman J (2000) Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim 60:641–658CrossRef Opferman J (2000) Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim 60:641–658CrossRef
59.
Zurück zum Zitat Nakano M, Wada T, Koga N (2015) Exothermic behavior of thermal decomposition of sodium percarbonate: kinetic deconvolution of successive endotermic and exothermic processes. J Phys Chem A 119:9761–9769CrossRef Nakano M, Wada T, Koga N (2015) Exothermic behavior of thermal decomposition of sodium percarbonate: kinetic deconvolution of successive endotermic and exothermic processes. J Phys Chem A 119:9761–9769CrossRef
60.
Zurück zum Zitat Honcová P, Svoboda R, Pilný P, Sádovská G, Barták J, Beneš L, Honc D (2016) Kinetic study of dehydration of calcium oxalate trihydrate. J Therm Anal Calorim 124:151–158CrossRef Honcová P, Svoboda R, Pilný P, Sádovská G, Barták J, Beneš L, Honc D (2016) Kinetic study of dehydration of calcium oxalate trihydrate. J Therm Anal Calorim 124:151–158CrossRef
61.
Zurück zum Zitat Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028CrossRef Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028CrossRef
62.
Zurück zum Zitat Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709CrossRef Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709CrossRef
63.
Zurück zum Zitat Hlaváček B, Carreau PJ (1975) Correlation between linear and non-linear viscoelatic data for polymer solutions. In: Walters K, Hutton JF, Pearson JRA (eds) Theoretical rheology. Applied Science Publishers, London (ISBN 9780853346388) Hlaváček B, Carreau PJ (1975) Correlation between linear and non-linear viscoelatic data for polymer solutions. In: Walters K, Hutton JF, Pearson JRA (eds) Theoretical rheology. Applied Science Publishers, London (ISBN 9780853346388)
64.
Zurück zum Zitat Hlaváček B, Šesták J (2009) Structural changes in liquids, creation of voids, micromovemets of vibrational centers and built-in blocks toward the glass transition temperature. Chapter 18. In: Šesták J, Holeček M, Málek J (eds) Thermodynamic, structural and behavior aspects of materials accentuating non-crystalline states. OPS-ZČU Plzeň, pp 388–411 (ISBN 978-80-87269-06-00, second edition 2011 (ISBN 978-80-87269-20-6) Hlaváček B, Šesták J (2009) Structural changes in liquids, creation of voids, micromovemets of vibrational centers and built-in blocks toward the glass transition temperature. Chapter 18. In: Šesták J, Holeček M, Málek J (eds) Thermodynamic, structural and behavior aspects of materials accentuating non-crystalline states. OPS-ZČU Plzeň, pp 388–411 (ISBN 978-80-87269-06-00, second edition 2011 (ISBN 978-80-87269-20-6)
65.
Zurück zum Zitat Šesták J, Hlaváček B, Hubík P, Mareš JJ (2013) Vibrational forms in the vicinity of glass transition, structural changes and the creation of voids when assuming polarizibility. Chapter 3. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. pp 41–58. Springer, Berlin (ISBN 978-90-481-2881-5) Šesták J, Hlaváček B, Hubík P, Mareš JJ (2013) Vibrational forms in the vicinity of glass transition, structural changes and the creation of voids when assuming polarizibility. Chapter 3. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. pp 41–58. Springer, Berlin (ISBN 978-90-481-2881-5)
66.
Zurück zum Zitat Šesták J (2004) Oscillation modes and modern theories of glassy state. Chapter 14. In: Heat, thermal analysis and society. Nucleus, Hradec Kralove, pp 242–247 (ISBN 8086225-54-2) Šesták J (2004) Oscillation modes and modern theories of glassy state. Chapter 14. In: Heat, thermal analysis and society. Nucleus, Hradec Kralove, pp 242–247 (ISBN 8086225-54-2)
67.
Zurück zum Zitat Šesták J (2015) Dynamic cooperative behavior of constituting species at the glass transition vicinity: inspirational links to B. Hlaváček (1941-2014) legacy. J Therm Anal Calor. 120:167–173CrossRef Šesták J (2015) Dynamic cooperative behavior of constituting species at the glass transition vicinity: inspirational links to B. Hlaváček (1941-2014) legacy. J Therm Anal Calor. 120:167–173CrossRef
68.
Zurück zum Zitat Hlaváček B, Černošková E, Prokůpek L, Večeřa M (1996) Transition points in liquid state and their molecular modeling. Thermochim Acta 280(281):417CrossRef Hlaváček B, Černošková E, Prokůpek L, Večeřa M (1996) Transition points in liquid state and their molecular modeling. Thermochim Acta 280(281):417CrossRef
69.
Zurück zum Zitat Hlaváček B, Křesálek V, Souček J (1997) Anharmonicity of motion in the liquid state and its consequences. J Chem Phys 107:4658–4667CrossRef Hlaváček B, Křesálek V, Souček J (1997) Anharmonicity of motion in the liquid state and its consequences. J Chem Phys 107:4658–4667CrossRef
70.
Zurück zum Zitat Hlaváček B, Souček J, Prokůpek L, Večeřa M (1997/1998) The thermal entropy concept and T g transition. J Polym Eng 17:111–137 Hlaváček B, Souček J, Prokůpek L, Večeřa M (1997/1998) The thermal entropy concept and T g transition. J Polym Eng 17:111–137
71.
Zurück zum Zitat Hlaváček B, Shánělova J, Málek J (1999) The discontinuities in amplitudes of particles micromotions in liquid state. Mech Time-Depend Mater 3:351–370CrossRef Hlaváček B, Shánělova J, Málek J (1999) The discontinuities in amplitudes of particles micromotions in liquid state. Mech Time-Depend Mater 3:351–370CrossRef
72.
Zurück zum Zitat Hlaváček B, Šesták J, Mareš JJ (2002) Mutual interdependence of partitions functions in vicinity T g of transition. J Therm Anal Cal 67:239CrossRef Hlaváček B, Šesták J, Mareš JJ (2002) Mutual interdependence of partitions functions in vicinity T g of transition. J Therm Anal Cal 67:239CrossRef
73.
Zurück zum Zitat Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Forms of vibrations and structural changes in liquid state. J Therm Anal Cal 80:271–283CrossRef Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Forms of vibrations and structural changes in liquid state. J Therm Anal Cal 80:271–283CrossRef
74.
Zurück zum Zitat Hlaváček B, Drašar Č, Kalendová A, Mencl P, Šesták J, Veselý D (2013) Glassy state, as the lawfully disarranged state: vibration uncertainty and chaos like movements. Phys Procedia 44:52–59 (ISSN: 1875-3892) Hlaváček B, Drašar Č, Kalendová A, Mencl P, Šesták J, Veselý D (2013) Glassy state, as the lawfully disarranged state: vibration uncertainty and chaos like movements. Phys Procedia 44:52–59 (ISSN: 1875-3892)
75.
Zurück zum Zitat Málek J, Svoboda R (2013) Structural relaxation and viscosity behavior in supercooled liquids at the glass transition, Chapter 7. In: Šesták J, Šimon P (eds) Thermal analysis of micro, nano- and non-crystalline materials. Springer, Berlin, pp 147–174 (ISBN 978-90-481-3149-5) Málek J, Svoboda R (2013) Structural relaxation and viscosity behavior in supercooled liquids at the glass transition, Chapter 7. In: Šesták J, Šimon P (eds) Thermal analysis of micro, nano- and non-crystalline materials. Springer, Berlin, pp 147–174 (ISBN 978-90-481-3149-5)
76.
Zurück zum Zitat Hlaváček B, Mareš JJ (2008) Fyzika struktur amorfních a krystalických materiálů. In: Šesták J (ed) Physics of structures of amorphous and crystalline materials. Public House of the Pardubice, Pardubice (in Czech - ISBN 978-80-7395-023-1) Hlaváček B, Mareš JJ (2008) Fyzika struktur amorfních a krystalických materiálů. In: Šesták J (ed) Physics of structures of amorphous and crystalline materials. Public House of the Pardubice, Pardubice (in Czech - ISBN 978-80-7395-023-1)
77.
Zurück zum Zitat Bradley P (2010) Great mysteries. New Holland, New York Bradley P (2010) Great mysteries. New Holland, New York
78.
Zurück zum Zitat Schultz JM (1974) Polymer material science. Prentice Hall, Englewood, New Jersey (ISBN 013-6870-38-4) Schultz JM (1974) Polymer material science. Prentice Hall, Englewood, New Jersey (ISBN 013-6870-38-4)
79.
Zurück zum Zitat Tobolsky AV (1960) The properties and structure of polymers. John Wiley, New York (ISBN 047-1875-81-3) Tobolsky AV (1960) The properties and structure of polymers. John Wiley, New York (ISBN 047-1875-81-3)
80.
Zurück zum Zitat Heuer A, Spiess HW (1994) Universality of glass transition temperature. J Non-Cryst Solids 176:294–299CrossRef Heuer A, Spiess HW (1994) Universality of glass transition temperature. J Non-Cryst Solids 176:294–299CrossRef
81.
Zurück zum Zitat Ferry JD (1961) Viscoelastic properties of polymers, 3rd edn. Wiley, New York (1980—ISBN: 978-0-471-04894-7) Ferry JD (1961) Viscoelastic properties of polymers, 3rd edn. Wiley, New York (1980—ISBN: 978-0-471-04894-7)
82.
Zurück zum Zitat Williams M, Landel R, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77:3701–3707CrossRef Williams M, Landel R, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77:3701–3707CrossRef
83.
Zurück zum Zitat Liu CY, He JS, Keunings R, Bailly R (2006) New linearized relation for the universal viscosity-temperature behavior of polymer melts. Macromolecules 39:8867–8869CrossRef Liu CY, He JS, Keunings R, Bailly R (2006) New linearized relation for the universal viscosity-temperature behavior of polymer melts. Macromolecules 39:8867–8869CrossRef
84.
Zurück zum Zitat Šesták J (1985) Some thermodynamic aspects of the glassy state. Thermochim Acta 95:13–459 Šesták J (1985) Some thermodynamic aspects of the glassy state. Thermochim Acta 95:13–459
85.
Zurück zum Zitat Queiroz C, Šesták J (2010) Aspects of the non-crystalline state. Phys Chem Glass Eur J Glass Sci Technol B 51:165–168 Queiroz C, Šesták J (2010) Aspects of the non-crystalline state. Phys Chem Glass Eur J Glass Sci Technol B 51:165–168
86.
Zurück zum Zitat Angell CA (1988) Perspective on the glass transition. J Phys Chem Sol 49:863–871CrossRef Angell CA (1988) Perspective on the glass transition. J Phys Chem Sol 49:863–871CrossRef
87.
Zurück zum Zitat Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids 131(133):13–31CrossRef Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids 131(133):13–31CrossRef
88.
Zurück zum Zitat Beiner M, Huth H, Schroter K (2001) Crossover region of dynamics glass transition: general trends and individual aspects. J Non-Cryst Solids 279:126–135CrossRef Beiner M, Huth H, Schroter K (2001) Crossover region of dynamics glass transition: general trends and individual aspects. J Non-Cryst Solids 279:126–135CrossRef
89.
Zurück zum Zitat Angell CA, Sichina W (1976) Thermodynamics of the glass transition: empirical aspects. Ann New York Acad Sci 279:53–67CrossRef Angell CA, Sichina W (1976) Thermodynamics of the glass transition: empirical aspects. Ann New York Acad Sci 279:53–67CrossRef
90.
Zurück zum Zitat Angell CA (1991) Thermodynamic aspects of the glass transition in liquids and plastic crystals. Pure Appl Chem 63:1387CrossRef Angell CA (1991) Thermodynamic aspects of the glass transition in liquids and plastic crystals. Pure Appl Chem 63:1387CrossRef
91.
Zurück zum Zitat Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1615CrossRef Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1615CrossRef
92.
Zurück zum Zitat Angell CA (2013) Heat capacity and entropy functions in strong and fragile glass-formers relative to those of disordering crystalline materials. Chapter 2. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. Springer, Berlin, pp 21–40 (ISBN 978-90-481-2881-5) Angell CA (2013) Heat capacity and entropy functions in strong and fragile glass-formers relative to those of disordering crystalline materials. Chapter 2. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. Springer, Berlin, pp 21–40 (ISBN 978-90-481-2881-5)
93.
Zurück zum Zitat Hlaváček B, Šesták J (2014) Redefinition of the dependence of dynamical viscosity on temperature as the thermal sensitivity as an alternative of the familiar term known as Angell´s fragility. Uncompleted and unpublished Hlaváček B, Šesták J (2014) Redefinition of the dependence of dynamical viscosity on temperature as the thermal sensitivity as an alternative of the familiar term known as Angell´s fragility. Uncompleted and unpublished
95.
Zurück zum Zitat Kozmidis-Petrovič AF, Šesták J (2017) Glass transition temperature its exploitation and insight to fragility. J Min Metall B, submitted Kozmidis-Petrovič AF, Šesták J (2017) Glass transition temperature its exploitation and insight to fragility. J Min Metall B, submitted
96.
Zurück zum Zitat Mareš JJ, Šesták J (2005) An attempt at quantum thermal physics. J Thermal Anal Calor 82:681–686CrossRef Mareš JJ, Šesták J (2005) An attempt at quantum thermal physics. J Thermal Anal Calor 82:681–686CrossRef
97.
Zurück zum Zitat Mareš JJ, Stávek J, Šesták J (2004) Quantum aspects of self-organized periodical chemical reactions. J Chem Phys 121:1499CrossRef Mareš JJ, Stávek J, Šesták J (2004) Quantum aspects of self-organized periodical chemical reactions. J Chem Phys 121:1499CrossRef
98.
Zurück zum Zitat Mareš JJ, Šesták J, Hubík P (2013) Transport constitutive relations, quantum diffusion and periodic reactions. Chapter 14. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. Springer, Berlin, pp 227–245 (ISBN 978-90-481-2881-5) Mareš JJ, Šesták J, Hubík P (2013) Transport constitutive relations, quantum diffusion and periodic reactions. Chapter 14. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. Springer, Berlin, pp 227–245 (ISBN 978-90-481-2881-5)
Metadaten
Titel
Thermo-kinetic Phenomena Occurring in Glasses: Their Formalism and Mutual Relationships
verfasst von
Roman Svoboda
Jiří Málek
Jaroslav Šesták
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45899-1_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.