Skip to main content
Erschienen in: International Journal of Steel Structures 1/2019

31.05.2018

Thermo-Mechanical Analysis of CO2 Laser Butt Welding on AISI 304 Steel Thin Plates

verfasst von: Rakesh Bhadra, Pardeep Pankaj, Pankaj Biswas, U. S. Dixit

Erschienen in: International Journal of Steel Structures | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this present study both numerical and experimental investigations of CO2 laser butt welding on thin AISI 304 Steel sheet were carried out. A 3D numerical model was established using Finite Element Method for determining the weld induced transient thermal history, residual stresses and residual deformation. The finite element software package ANSYS-14.5 was used to develop this present model. In this model temperature dependent thermo-mechanical properties of AISI 304 steel were considered. The element birth and death technique was used to simulate the welding joint. The weld bead geometry was also incorporated in this present study. Appropriate APDL macros were developed to simulate the situation of a moving volumetric heat source and transient elasto-plastic thermos-mechanical analysis. The numerical results were validated by experimentally obtained results. The FE model compared well with those of the experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdulateef, O. F. (2009). Investigation of thermal stress distribution in laser spot welding process. Al-Khwarizmi Engineering Journal, 5, 33–41. Abdulateef, O. F. (2009). Investigation of thermal stress distribution in laser spot welding process. Al-Khwarizmi Engineering Journal, 5, 33–41.
Zurück zum Zitat Alberg, H. (2005). Simulation of welding and heat treatment modeling and validation. PhD thesis, Lulea University of Technology, Sweden. Alberg, H. (2005). Simulation of welding and heat treatment modeling and validation. PhD thesis, Lulea University of Technology, Sweden.
Zurück zum Zitat Armentani, E., Esposito, R., & Sepe, R. (2007). The effect of thermal properties and weld efficiency on residual stresses in welding. Journal of Achievements in Materials and Manufacturing Engineering, 20, 1–2. Armentani, E., Esposito, R., & Sepe, R. (2007). The effect of thermal properties and weld efficiency on residual stresses in welding. Journal of Achievements in Materials and Manufacturing Engineering, 20, 1–2.
Zurück zum Zitat Berrettaa, J. R., de Rossi, W., das Neves, M. D. M., de Almeida, I. A., & Junior, N. D. (2007). Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels. Optics and Lasers in Engineering, 45, 960–966.CrossRef Berrettaa, J. R., de Rossi, W., das Neves, M. D. M., de Almeida, I. A., & Junior, N. D. (2007). Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels. Optics and Lasers in Engineering, 45, 960–966.CrossRef
Zurück zum Zitat Cheng, W. (2005). In-plane shrinkage strains and their effects on welding distortion in thin-wall structures. PhD thesis, The Ohiho State University, USA. Cheng, W. (2005). In-plane shrinkage strains and their effects on welding distortion in thin-wall structures. PhD thesis, The Ohiho State University, USA.
Zurück zum Zitat Deng, D., & Murakawa, H. (2008). Prediction of welding distortion and residual stress in a thin plate. Computational Materials Science, 43, 353–365.CrossRef Deng, D., & Murakawa, H. (2008). Prediction of welding distortion and residual stress in a thin plate. Computational Materials Science, 43, 353–365.CrossRef
Zurück zum Zitat Denga, D., & Kiyoshimab, S. (2010). Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences. Nuclear Engineering and Design, 240, 688–696.CrossRef Denga, D., & Kiyoshimab, S. (2010). Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences. Nuclear Engineering and Design, 240, 688–696.CrossRef
Zurück zum Zitat Fanous, F. Z. I., Younan, M. Y., & Wifi, A. S. (2003). 3-D finite element modelling of the welding process using element birth and element movement techniques. Transactions of the ASME, The Journal of Pressure Vessel Technology, 125, 144–150.CrossRef Fanous, F. Z. I., Younan, M. Y., & Wifi, A. S. (2003). 3-D finite element modelling of the welding process using element birth and element movement techniques. Transactions of the ASME, The Journal of Pressure Vessel Technology, 125, 144–150.CrossRef
Zurück zum Zitat Jiang, W., Luo, Y., Wang, B. Y., Woo, W., & Tu, S. T. (2015). Neutron diffraction measurement and numerical simulation to study the effect of repair depth on residual stress in 316L stainless steel repair weld. Journal of Pressure Vessel Technology, 137, 041406-1. Jiang, W., Luo, Y., Wang, B. Y., Woo, W., & Tu, S. T. (2015). Neutron diffraction measurement and numerical simulation to study the effect of repair depth on residual stress in 316L stainless steel repair weld. Journal of Pressure Vessel Technology, 137, 041406-1.
Zurück zum Zitat Jiang, W. C., Wang, B. Y., Gong, J. M., & Tu, S. T. (2011). Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate. Materials and Design, 32, 2851–2857.CrossRef Jiang, W. C., Wang, B. Y., Gong, J. M., & Tu, S. T. (2011). Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate. Materials and Design, 32, 2851–2857.CrossRef
Zurück zum Zitat Jiang, W., Xu, X. P., Gong, J. M., & Tu, S. T. (2012). Influence of repair length on residual stress in the repair weld of a clad plate. Nuclear Engineering and Design, 246, 211–219.CrossRef Jiang, W., Xu, X. P., Gong, J. M., & Tu, S. T. (2012). Influence of repair length on residual stress in the repair weld of a clad plate. Nuclear Engineering and Design, 246, 211–219.CrossRef
Zurück zum Zitat Kim, S.-H., Kim, J.-B., & Lee, W.-J. (2009). Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr–1Mo steel weld. Journal of Materials Processing Technology, 92, 3905–3913.CrossRef Kim, S.-H., Kim, J.-B., & Lee, W.-J. (2009). Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr–1Mo steel weld. Journal of Materials Processing Technology, 92, 3905–3913.CrossRef
Zurück zum Zitat Kim, K., Lee, J., & Cho, H. (2010). Analysis of pulsed Nd:YAG laser welding of AISI 304 steel. Journal of Mechanical Science and Technology, 24(11), 2253–2259.CrossRef Kim, K., Lee, J., & Cho, H. (2010). Analysis of pulsed Nd:YAG laser welding of AISI 304 steel. Journal of Mechanical Science and Technology, 24(11), 2253–2259.CrossRef
Zurück zum Zitat Kong, F., Ma, J., & Kovacevic, R. (2011). Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process. Journal of Materials Processing Technology, 211, 1102–1111.CrossRef Kong, F., Ma, J., & Kovacevic, R. (2011). Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process. Journal of Materials Processing Technology, 211, 1102–1111.CrossRef
Zurück zum Zitat Lakshminarayanan, A. K., & Balasubramaniam, V. (2012). Evaluation of micro-structure and mechanical properties of laser beam welded 409 M grade ferritic stainless steel. Journal of Iron and Steel Research, 19, 72–78.CrossRef Lakshminarayanan, A. K., & Balasubramaniam, V. (2012). Evaluation of micro-structure and mechanical properties of laser beam welded 409 M grade ferritic stainless steel. Journal of Iron and Steel Research, 19, 72–78.CrossRef
Zurück zum Zitat Mei, L., Yan, D., Yi, J., Chen, G., & Ge, X. (2013). Comparative analysis on overlap welding properties of fiber laser and CO2 laser for body-in-white sheets. Materials and Design, 49, 905–912.CrossRef Mei, L., Yan, D., Yi, J., Chen, G., & Ge, X. (2013). Comparative analysis on overlap welding properties of fiber laser and CO2 laser for body-in-white sheets. Materials and Design, 49, 905–912.CrossRef
Zurück zum Zitat Mohammed, S. N. (2011). Analysis of temperature and residual stress distribution in CO2 laser welded aluminum 6061 plates using FEM. Al-Khwarizmi Engineering Journal, 7, 48–58. Mohammed, S. N. (2011). Analysis of temperature and residual stress distribution in CO2 laser welded aluminum 6061 plates using FEM. Al-Khwarizmi Engineering Journal, 7, 48–58.
Zurück zum Zitat Moraitis, G. A., & Labeas, G. N. (2008). Residual stress and distortions calculation of laser beam welding for aluminum lap joints. Journal of Materials Processing Technology, 198, 260–269.CrossRef Moraitis, G. A., & Labeas, G. N. (2008). Residual stress and distortions calculation of laser beam welding for aluminum lap joints. Journal of Materials Processing Technology, 198, 260–269.CrossRef
Zurück zum Zitat Piekarska, W., & Kubiak, M. (2011). Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. International Journal of Heat and Mass Transfer, 54, 4966–4974.CrossRefMATH Piekarska, W., & Kubiak, M. (2011). Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. International Journal of Heat and Mass Transfer, 54, 4966–4974.CrossRefMATH
Zurück zum Zitat Ronda, J., & Siwek, A. (2011). Modelling of laser welding process in the phase of keyhole formation. Archives of Civil and Mechanical Engineering, 11(3), 739–752.CrossRef Ronda, J., & Siwek, A. (2011). Modelling of laser welding process in the phase of keyhole formation. Archives of Civil and Mechanical Engineering, 11(3), 739–752.CrossRef
Zurück zum Zitat Sathiya, P., & AbdulJaleel, M. Y. (2010). Measurement of the bead profile and micro-structural characterization of a CO2 laser welded AISI 904L super-austenitic stainless steel. Optics & Laser Technology, 42, 960–968.CrossRef Sathiya, P., & AbdulJaleel, M. Y. (2010). Measurement of the bead profile and micro-structural characterization of a CO2 laser welded AISI 904L super-austenitic stainless steel. Optics & Laser Technology, 42, 960–968.CrossRef
Zurück zum Zitat Sun, J., Liu, X., Tong, Y., & Deng, D. (2014). A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Materials and Design, 63, 519–530.CrossRef Sun, J., Liu, X., Tong, Y., & Deng, D. (2014). A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Materials and Design, 63, 519–530.CrossRef
Zurück zum Zitat SureshKumar, K. (2014). Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Materials Science, 6, 21–834. SureshKumar, K. (2014). Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Materials Science, 6, 21–834.
Zurück zum Zitat Tsai, N. S., & Eagar, T. W. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 62, 346–355. Tsai, N. S., & Eagar, T. W. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 62, 346–355.
Zurück zum Zitat Tsirkas, S. A., Papanikos, P., & Kermanidis, Th. (2003). Numerical simulation of laser welding process in butt-joint specimens. Journal of Materials Processing Technology, 134, 59–69.CrossRef Tsirkas, S. A., Papanikos, P., & Kermanidis, Th. (2003). Numerical simulation of laser welding process in butt-joint specimens. Journal of Materials Processing Technology, 134, 59–69.CrossRef
Zurück zum Zitat Tu, J. F., Inoue, T., & Miyamoto, I. (2003). Quantitative characterization of keyhole absorption mechanisms in 20 kW-class CO2 laser welding processes. Journal of Physics D: Applied Physics, 36, 192–203.CrossRef Tu, J. F., Inoue, T., & Miyamoto, I. (2003). Quantitative characterization of keyhole absorption mechanisms in 20 kW-class CO2 laser welding processes. Journal of Physics D: Applied Physics, 36, 192–203.CrossRef
Zurück zum Zitat Vakili-Tahami, F., & Ziaei-Asl, A. (2013). Numerical and experimental investigation of T-shape fillet welding of AISI 304 stainless steel plates. Materials and Design, 47, 615–623.CrossRef Vakili-Tahami, F., & Ziaei-Asl, A. (2013). Numerical and experimental investigation of T-shape fillet welding of AISI 304 stainless steel plates. Materials and Design, 47, 615–623.CrossRef
Zurück zum Zitat Zhang, M., Chen, G., Zhou, Y., & Liao, S. (2014). Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser. Materials and Design, 53, 568–576.CrossRef Zhang, M., Chen, G., Zhou, Y., & Liao, S. (2014). Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser. Materials and Design, 53, 568–576.CrossRef
Metadaten
Titel
Thermo-Mechanical Analysis of CO2 Laser Butt Welding on AISI 304 Steel Thin Plates
verfasst von
Rakesh Bhadra
Pardeep Pankaj
Pankaj Biswas
U. S. Dixit
Publikationsdatum
31.05.2018
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 1/2019
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0085-z

Weitere Artikel der Ausgabe 1/2019

International Journal of Steel Structures 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.