Skip to main content

2010 | OriginalPaper | Buchkapitel

Thermo-Responsive Biodegradable Hydrogels from Stereocomplexed Poly(lactide)s

verfasst von : Tomoko Fujiwara, Tetsuji Yamaoka, Yoshiharu Kimura

Erschienen in: Biomedical Applications of Hydrogels Handbook

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogels that form by responding to temperature changes are used for injectable biomaterials with many potential applications. Numerous techniques have been used to prepare biodegradable polymers for bioapplications. Specifically, biocompatible hydrogels that can be safely injected without surgery and sustained/disintegrated in a controlled manner are of interest. Poly(lactide), PLA, is the most studied and utilized biodegradable polymer, and its block copolymers provide a great variety of structures and properties. Utilizing stereocomplexation technology of enantiomeric PLAs on thermo-sensitive hydrogels of PLA–PEG block copolymers is an important aspect of bioapplications of hydrogels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686CrossRef Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686CrossRef
2.
Zurück zum Zitat Takei YG, Aoki T, Sanui K et al (1994) Dynamic contact-angle measurement of temperature-responsive surface-properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules 27:6163–6166CrossRef Takei YG, Aoki T, Sanui K et al (1994) Dynamic contact-angle measurement of temperature-responsive surface-properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules 27:6163–6166CrossRef
3.
Zurück zum Zitat Zareie HM, Bulmus EV, Gunning AP et al (2000) Investigation of a stimuli-responsive copolymer by atomic force microscopy. Polymer 41:6723–6727CrossRef Zareie HM, Bulmus EV, Gunning AP et al (2000) Investigation of a stimuli-responsive copolymer by atomic force microscopy. Polymer 41:6723–6727CrossRef
4.
Zurück zum Zitat Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16:7503–7509CrossRef Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16:7503–7509CrossRef
5.
Zurück zum Zitat Vadnere M, Amidon G, Lindenbaum S et al (1984) Thermodynamic studies on the gel sol transition of some pluronic polyols. Int J Pharm 22:207–218CrossRef Vadnere M, Amidon G, Lindenbaum S et al (1984) Thermodynamic studies on the gel sol transition of some pluronic polyols. Int J Pharm 22:207–218CrossRef
6.
Zurück zum Zitat Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)–poly-(oxypropylene)–poly-(oxyethylene)-block-copolymers in aqueous-solution. Colloid Polym Sci 268:101–117CrossRef Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)–poly-(oxypropylene)–poly-(oxyethylene)-block-copolymers in aqueous-solution. Colloid Polym Sci 268:101–117CrossRef
7.
Zurück zum Zitat Jorgensen EB, Hvidt S, Brown W et al (1997) Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering. Macromolecules 30:2355–2364CrossRef Jorgensen EB, Hvidt S, Brown W et al (1997) Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering. Macromolecules 30:2355–2364CrossRef
8.
Zurück zum Zitat Deng Y, Yu GE, Price C et al (1992) Thermodynamics of micellization and gelation of oxyethylene oxypropylene diblock copolymers in aqueous-solution studied by light-scattering and differential scanning calorimetry. J Chem Soc Faraday Trans 88:1441–1446CrossRef Deng Y, Yu GE, Price C et al (1992) Thermodynamics of micellization and gelation of oxyethylene oxypropylene diblock copolymers in aqueous-solution studied by light-scattering and differential scanning calorimetry. J Chem Soc Faraday Trans 88:1441–1446CrossRef
9.
Zurück zum Zitat Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in aqueous-solutions – thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRef Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in aqueous-solutions – thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRef
10.
Zurück zum Zitat Rees DA (1969) Conformational analysis of polysaccharides. Part II. Alternating copolymers of agar–carrageenan–chondroitin type by model building in computer with calculation of helical parameters. J Chem Soc B 217–226CrossRef Rees DA (1969) Conformational analysis of polysaccharides. Part II. Alternating copolymers of agar–carrageenan–chondroitin type by model building in computer with calculation of helical parameters. J Chem Soc B 217–226CrossRef
11.
Zurück zum Zitat Hubbell JA, West JL, Chowdhury SM (eds) (1996) Advanced biomaterials in biomedical engineering and drug delivery systems. Springer, Tokyo Hubbell JA, West JL, Chowdhury SM (eds) (1996) Advanced biomaterials in biomedical engineering and drug delivery systems. Springer, Tokyo
12.
Zurück zum Zitat Nagata Y, Kajiwara K (1997) Gel handbook. NTS, Tokyo Nagata Y, Kajiwara K (1997) Gel handbook. NTS, Tokyo
13.
Zurück zum Zitat Steinbuechel A (2001) Biopolymers. Wiley-VCH, Weinheim Steinbuechel A (2001) Biopolymers. Wiley-VCH, Weinheim
14.
Zurück zum Zitat Tsuruta T, Hayashi T, Ishihara K et al (1993) Biomedical applications of polymeric materials. CRC Press, Boca Raton Tsuruta T, Hayashi T, Ishihara K et al (1993) Biomedical applications of polymeric materials. CRC Press, Boca Raton
15.
Zurück zum Zitat Zhu KJ, Song BH, Yang SL (1989) Super microcapsules (Smc). 1. Preparation and characterization of star polyethylene oxide (Peo)–polylactide (Pla) copolymers. J Polym Sci A Polym Chem 27:2151–2159CrossRef Zhu KJ, Song BH, Yang SL (1989) Super microcapsules (Smc). 1. Preparation and characterization of star polyethylene oxide (Peo)–polylactide (Pla) copolymers. J Polym Sci A Polym Chem 27:2151–2159CrossRef
16.
Zurück zum Zitat Zhu KJ, Lin XZ, Yang SL (1990) Preparation, characterization, and properties of polylactide (Pla) poly(ethylene glycol) (Peg) copolymers – a potential-drug carrier. J Appl Polym Sci 39:1–9CrossRef Zhu KJ, Lin XZ, Yang SL (1990) Preparation, characterization, and properties of polylactide (Pla) poly(ethylene glycol) (Peg) copolymers – a potential-drug carrier. J Appl Polym Sci 39:1–9CrossRef
17.
Zurück zum Zitat Kricheldorf HR, Boettcher C (1993) Polylactones. 27. Anionic-polymerization of l-lactide – variation of endgroups and synthesis of block-copolymers with poly(ethylene oxide). Macromol Symp 73:47–64CrossRef Kricheldorf HR, Boettcher C (1993) Polylactones. 27. Anionic-polymerization of l-lactide – variation of endgroups and synthesis of block-copolymers with poly(ethylene oxide). Macromol Symp 73:47–64CrossRef
18.
Zurück zum Zitat Kricheldorf HR, Kreisersaunders I, Boettcher C (1995) Polylactones. 31. Sn(Ii)octoate-initiated polymerization of l-lactide – a mechanistic study. Polymer 36:1253–1259CrossRef Kricheldorf HR, Kreisersaunders I, Boettcher C (1995) Polylactones. 31. Sn(Ii)octoate-initiated polymerization of l-lactide – a mechanistic study. Polymer 36:1253–1259CrossRef
19.
Zurück zum Zitat Kricheldorf HR, Meierhaack J (1993) Polylactones. 22. Aba triblock copolymers of l-lactide and poly(ethylene glycol). Macromol Chem Phys 194:715–725CrossRef Kricheldorf HR, Meierhaack J (1993) Polylactones. 22. Aba triblock copolymers of l-lactide and poly(ethylene glycol). Macromol Chem Phys 194:715–725CrossRef
20.
Zurück zum Zitat Cerrai P, Tricoli M (1993) Block-copolymers from l-lactide and poly(ethylene glycol) through a noncatalyzed route. Macromol Rapid Commun 14:529–538CrossRef Cerrai P, Tricoli M (1993) Block-copolymers from l-lactide and poly(ethylene glycol) through a noncatalyzed route. Macromol Rapid Commun 14:529–538CrossRef
21.
Zurück zum Zitat Jedlinski Z, Kurcok P, Walach W et al (1993) Polymerization of lactones. 17. Synthesis of ethylene glycol-l-lactide block-copolymers. Macromol Chem Phys 194:1681–1689CrossRef Jedlinski Z, Kurcok P, Walach W et al (1993) Polymerization of lactones. 17. Synthesis of ethylene glycol-l-lactide block-copolymers. Macromol Chem Phys 194:1681–1689CrossRef
22.
Zurück zum Zitat Xie WH, Chen DP, Fan XH et al (1999) Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. J Polym Sci A Polym Chem 37:3486–3491CrossRef Xie WH, Chen DP, Fan XH et al (1999) Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. J Polym Sci A Polym Chem 37:3486–3491CrossRef
23.
Zurück zum Zitat Li SM, Rashkov I, Espartero JL et al (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29:57–62CrossRef Li SM, Rashkov I, Espartero JL et al (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29:57–62CrossRef
24.
Zurück zum Zitat Goraltchouk A, Freier T, Shoichet MS (2005) Synthesis of degradable poly(l-lactide-co-ethylene glycol) porous tubes by liquid–liquid centrifugal casting for use as nerve guidance channels. Biomaterials 26:7555–7563CrossRef Goraltchouk A, Freier T, Shoichet MS (2005) Synthesis of degradable poly(l-lactide-co-ethylene glycol) porous tubes by liquid–liquid centrifugal casting for use as nerve guidance channels. Biomaterials 26:7555–7563CrossRef
25.
Zurück zum Zitat Younes H, Cohn D (1987) Morphological-study of biodegradable PEO/PLA block copolymers. J Biomed Mater Res 21:1301–1316CrossRef Younes H, Cohn D (1987) Morphological-study of biodegradable PEO/PLA block copolymers. J Biomed Mater Res 21:1301–1316CrossRef
26.
Zurück zum Zitat Kubies D, Rypacek F, Kovarova J et al (2000) Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials 21:529–536CrossRef Kubies D, Rypacek F, Kovarova J et al (2000) Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials 21:529–536CrossRef
27.
Zurück zum Zitat Li YX, Volland C, Kissel T (1994) In-vitro degradation and bovine serum-albumin release of the ABA triblock copolymers consisting of poly(l(+)lactic acid), or poly(l(+)lactic acid-co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J Controlled Release 32:121–128CrossRef Li YX, Volland C, Kissel T (1994) In-vitro degradation and bovine serum-albumin release of the ABA triblock copolymers consisting of poly(l(+)lactic acid), or poly(l(+)lactic acid-co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J Controlled Release 32:121–128CrossRef
28.
Zurück zum Zitat Rashkov I, Manolova N, Li SM et al (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29:50–56CrossRef Rashkov I, Manolova N, Li SM et al (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29:50–56CrossRef
29.
Zurück zum Zitat Shah SS, Zhu KJ, Pitt CG (1994) Poly-dl-lactic acid–polyethylene-glycol block-copolymers – the influence of polyethylene-glycol on the degradation of poly-dl-lactic acid. J Biomater Sci Polym Ed 5:421–431CrossRef Shah SS, Zhu KJ, Pitt CG (1994) Poly-dl-lactic acid–polyethylene-glycol block-copolymers – the influence of polyethylene-glycol on the degradation of poly-dl-lactic acid. J Biomater Sci Polym Ed 5:421–431CrossRef
30.
Zurück zum Zitat Li SM, Garreau H, Vert M (1990) Structure property relationships in the case of the degradation of massive aliphatic poly-(alpha-hydroxy acids) in aqueous-media. 1. Poly(dl-lactic acid). J Mater Sci Mater Med 1:123–130CrossRef Li SM, Garreau H, Vert M (1990) Structure property relationships in the case of the degradation of massive aliphatic poly-(alpha-hydroxy acids) in aqueous-media. 1. Poly(dl-lactic acid). J Mater Sci Mater Med 1:123–130CrossRef
31.
Zurück zum Zitat Hu DSG, Liu HJ (1993) Effect of soft segment on degradation kinetics in polyethylene glycol/poly(l-lactide) block-copolymers. Polymer Bull 30:669–676CrossRef Hu DSG, Liu HJ (1993) Effect of soft segment on degradation kinetics in polyethylene glycol/poly(l-lactide) block-copolymers. Polymer Bull 30:669–676CrossRef
32.
Zurück zum Zitat Mason MN, Metters AT, Bowman CN et al (2001) Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34:4630–4635CrossRef Mason MN, Metters AT, Bowman CN et al (2001) Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34:4630–4635CrossRef
33.
Zurück zum Zitat Shah NM, Pool MD, Metters AT (2006) Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromolecules 7:3171–3177CrossRef Shah NM, Pool MD, Metters AT (2006) Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromolecules 7:3171–3177CrossRef
34.
Zurück zum Zitat Graham NB, McNeill ME (1984) Hydrogels for controlled drug delivery. Biomaterials 5:27–36CrossRef Graham NB, McNeill ME (1984) Hydrogels for controlled drug delivery. Biomaterials 5:27–36CrossRef
35.
Zurück zum Zitat Metters AT, Anseth KS, Bowman CN (2000) Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41:3993–4004CrossRef Metters AT, Anseth KS, Bowman CN (2000) Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41:3993–4004CrossRef
36.
Zurück zum Zitat Metters AT, Bowman CN, Anseth KS (2000) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B 104:7043–7049CrossRef Metters AT, Bowman CN, Anseth KS (2000) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B 104:7043–7049CrossRef
37.
Zurück zum Zitat Metters AT, Bowman CN, Anseth KS (2001) Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels. AIChE J 47:1432–1437CrossRef Metters AT, Bowman CN, Anseth KS (2001) Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels. AIChE J 47:1432–1437CrossRef
38.
Zurück zum Zitat Metters AT, Anseth KS, Bowman CN (2001) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks: incorporating network non-idealities. J Phys Chem B 105:8069–8076CrossRef Metters AT, Anseth KS, Bowman CN (2001) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks: incorporating network non-idealities. J Phys Chem B 105:8069–8076CrossRef
39.
Zurück zum Zitat Molina I, Li SM, Martinez MB et al (2001) Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22:363–369CrossRef Molina I, Li SM, Martinez MB et al (2001) Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22:363–369CrossRef
40.
Zurück zum Zitat Deng XM, Li XH, Yuan ML et al (1999) Optimization of preparative conditions for poly-dl-lactide–polyethylene glycol microspheres with entrapped Vibrio cholera antigens. J Controlled Release 58:123–131CrossRef Deng XM, Li XH, Yuan ML et al (1999) Optimization of preparative conditions for poly-dl-lactide–­polyethylene glycol microspheres with entrapped Vibrio cholera antigens. J Controlled Release 58:123–131CrossRef
41.
Zurück zum Zitat Perez C, Sanchez A, Putnam D et al (2001) Poly(lactic acid)–poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Controlled Release 75:211–224CrossRef Perez C, Sanchez A, Putnam D et al (2001) Poly(lactic acid)–poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Controlled Release 75:211–224CrossRef
42.
Zurück zum Zitat Beck LR, Cowsar DR, Lewis DH et al (1979) New long-acting injectable microcapsule contraceptive system. Am J Obstet Gynecol 135:419–426 Beck LR, Cowsar DR, Lewis DH et al (1979) New long-acting injectable microcapsule contraceptive system. Am J Obstet Gynecol 135:419–426
43.
Zurück zum Zitat Gref R, Domb A, Quellec P et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Delivery Rev 16:215–233CrossRef Gref R, Domb A, Quellec P et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Delivery Rev 16:215–233CrossRef
44.
Zurück zum Zitat Sakurai K, Nakada Y, Nakamura T et al (1999) Preparation and characterization of polylactide–poly(ethylene glycol)–polylactide triblock polymers and a preliminary in vivo examination of the blood circulation time for the nanoparticles made therefrom. J Macromol Sci Pure Appl Chem 36:1863–1877CrossRef Sakurai K, Nakada Y, Nakamura T et al (1999) Preparation and characterization of polylactide–poly(ethylene glycol)–polylactide triblock polymers and a preliminary in vivo examination of the blood circulation time for the nanoparticles made therefrom. J Macromol Sci Pure Appl Chem 36:1863–1877CrossRef
45.
Zurück zum Zitat Matsumoto J, Nakada Y, Sakurai K et al (1999) Preparation of nanoparticles consisted of poly(l-lactide)–poly(ethylene glycol)–poly(l-lactide) and their evaluation in vitro. Int J Pharm 185:93–101CrossRef Matsumoto J, Nakada Y, Sakurai K et al (1999) Preparation of nanoparticles consisted of poly(l-lactide)–poly(ethylene glycol)–poly(l-lactide) and their evaluation in vitro. Int J Pharm 185:93–101CrossRef
46.
Zurück zum Zitat De Jaeghere F, Allemann E, Feijen J et al (2000) Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA:PEO diblock and triblock copolymers. J Drug Targeting 8:143–153CrossRef De Jaeghere F, Allemann E, Feijen J et al (2000) Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA:PEO diblock and triblock copolymers. J Drug Targeting 8:143–153CrossRef
47.
Zurück zum Zitat Jeong B, Bae YH, Lee DS et al (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862CrossRef Jeong B, Bae YH, Lee DS et al (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862CrossRef
48.
Zurück zum Zitat Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol–gel reversible hydrogels. Adv Drug Delivery Rev 54:37–51CrossRef Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol–gel reversible hydrogels. Adv Drug Delivery Rev 54:37–51CrossRef
49.
Zurück zum Zitat Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069CrossRef Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069CrossRef
50.
Zurück zum Zitat Jeong JH, Kim SW, Park TG (2004) Biodegradable triblock copolymer of PLGA–PEG–PLGA enhances gene transfection efficiency. Pharm Res 21:50–54CrossRef Jeong JH, Kim SW, Park TG (2004) Biodegradable triblock copolymer of PLGA–PEG–PLGA enhances gene transfection efficiency. Pharm Res 21:50–54CrossRef
51.
Zurück zum Zitat Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Controlled Release 63:155–163CrossRef Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Controlled Release 63:155–163CrossRef
52.
Zurück zum Zitat Kim YJ, Kim SW (2003) Controlled drug delivery from injectable biodegradable triblock copolymer. In ’Polymer Gels: Fundamentals and Applications’, Bohidar HB, Dubin P, Osada Y Eds, ACS, 833:300–311CrossRef Kim YJ, Kim SW (2003) Controlled drug delivery from injectable biodegradable triblock copolymer. In ’Polymer Gels: Fundamentals and Applications’, Bohidar HB, Dubin P, Osada Y Eds, ACS, 833:300–311CrossRef
53.
Zurück zum Zitat Li ZH, Ning W, Wang JM et al (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20:884–888CrossRef Li ZH, Ning W, Wang JM et al (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20:884–888CrossRef
54.
Zurück zum Zitat Lee PY, Li ZH, Huang L (2003) Thermosensitive hydrogel as a Tgf-beta 1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20:1995–2000CrossRef Lee PY, Li ZH, Huang L (2003) Thermosensitive hydrogel as a Tgf-beta 1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20:1995–2000CrossRef
55.
Zurück zum Zitat Lee PY, Cobain E, Huard J et al (2007) Thermosensitive hydrogel PEG–PLGA–PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol Ther 15:1189–1194CrossRef Lee PY, Cobain E, Huard J et al (2007) Thermosensitive hydrogel PEG–PLGA–PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol Ther 15:1189–1194CrossRef
56.
Zurück zum Zitat Yu L, Chang GT, Zhang H et al (2008) Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm 348:95–106CrossRef Yu L, Chang GT, Zhang H et al (2008) Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm 348:95–106CrossRef
57.
Zurück zum Zitat Qao MX, Chen DW, Hao TN et al (2008) Injectable thermosensitive PLGA–PEG–PLGA triblock copolymers-based hydrogels as carriers for interleukin-2. Pharmazie 63:27–30 Qao MX, Chen DW, Hao TN et al (2008) Injectable thermosensitive PLGA–PEG–PLGA triblock copolymers-based hydrogels as carriers for interleukin-2. Pharmazie 63:27–30
58.
Zurück zum Zitat Qiao MX, Chen DW, Ma XC et al (2006) Sustained release of bee venom peptide from biodegradable thermosensitive PLGA–PEG–PLGA triblock copolymer-based hydrogel in vitro. Pharmazie 61:199–202 Qiao MX, Chen DW, Ma XC et al (2006) Sustained release of bee venom peptide from biodegradable thermosensitive PLGA–PEG–PLGA triblock copolymer-based hydrogel in vitro. Pharmazie 61:199–202
59.
Zurück zum Zitat Pratoomsoot C, Tanioka H, Hori K et al (2008) A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials 29:272–281CrossRef Pratoomsoot C, Tanioka H, Hori K et al (2008) A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials 29:272–281CrossRef
60.
Zurück zum Zitat Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRef Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRef
61.
Zurück zum Zitat Miyamoto S, Takaoka K, Okada T et al (1993) Polylactic acid polyethyleneglycol block-copolymer – a new biodegradable synthetic carrier for bone morphogenetic protein. Clin Orthop:333–343 Miyamoto S, Takaoka K, Okada T et al (1993) Polylactic acid polyethyleneglycol block-copolymer – a new biodegradable synthetic carrier for bone morphogenetic protein. Clin Orthop:333–343
62.
Zurück zum Zitat Iijima M, Nagasaki Y, Okada T et al (1999) Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32:1140–1146CrossRef Iijima M, Nagasaki Y, Okada T et al (1999) Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32:1140–1146CrossRef
63.
Zurück zum Zitat Choi SW, Choi SY, Jeong B et al (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. Part II. J Polym Sci A Polym Chem 37:2207–2218CrossRef Choi SW, Choi SY, Jeong B et al (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. Part II. J Polym Sci A Polym Chem 37:2207–2218CrossRef
64.
Zurück zum Zitat Aamer KA, Sardinha H, Bhatia SR et al (2004) Rheological studies of PLLA–PEO–PLLA triblock copolymer hydrogels. Biomaterials 25:1087–1093CrossRef Aamer KA, Sardinha H, Bhatia SR et al (2004) Rheological studies of PLLA–PEO–PLLA triblock copolymer hydrogels. Biomaterials 25:1087–1093CrossRef
65.
Zurück zum Zitat Sanabria-DeLong N, Agrawal SK, Bhatia SR et al (2006) Controlling hydrogel properties by crystallization of hydrophobic domains. Macromolecules 39:1308–1310CrossRef Sanabria-DeLong N, Agrawal SK, Bhatia SR et al (2006) Controlling hydrogel properties by crystallization of hydrophobic domains. Macromolecules 39:1308–1310CrossRef
66.
Zurück zum Zitat Sanabria-DeLong N, Agrawal SK, Bhatia SR et al (2007) Impact of synthetic technique on PLA–PEO–PLA physical hydrogel properties. Macromolecules 40:7864–7873CrossRef Sanabria-DeLong N, Agrawal SK, Bhatia SR et al (2007) Impact of synthetic technique on PLA–PEO–PLA physical hydrogel properties. Macromolecules 40:7864–7873CrossRef
67.
Zurück zum Zitat Agrawal SK, Sanabria-DeLong N, Tew GN et al (2008) Structural characterization of PLA–PEO–PLA solutions and hydrogels: crystalline vs. amorphous PLA domains. Macromolecules 41:1774–1784CrossRef Agrawal SK, Sanabria-DeLong N, Tew GN et al (2008) Structural characterization of PLA–PEO–PLA solutions and hydrogels: crystalline vs. amorphous PLA domains. Macromolecules 41:1774–1784CrossRef
68.
Zurück zum Zitat Bryant SJ, Bender RJ, Durand KL et al (2004) Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng 86:747–755CrossRef Bryant SJ, Bender RJ, Durand KL et al (2004) Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng 86:747–755CrossRef
69.
Zurück zum Zitat Rice MA, Anseth KS (2004) Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A 70A:560–568CrossRef Rice MA, Anseth KS (2004) Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A 70A:560–568CrossRef
70.
Zurück zum Zitat Murakami Y, Yokoyama M, Okano T et al (2007) A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. J Biomed Mater Res A 80A:421–427CrossRef Murakami Y, Yokoyama M, Okano T et al (2007) A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. J Biomed Mater Res A 80A:421–427CrossRef
71.
Zurück zum Zitat Ikada Y, Jamshidi K, Tsuji H et al (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef Ikada Y, Jamshidi K, Tsuji H et al (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef
72.
Zurück zum Zitat Okihara T, Tsuji M, Kawaguchi A et al (1991) Crystal-structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci Phys B30:119–140CrossRef Okihara T, Tsuji M, Kawaguchi A et al (1991) Crystal-structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci Phys B30:119–140CrossRef
73.
Zurück zum Zitat Tsuji H, Horii F, Hyon SH et al (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated-solutions. Macromolecules 24:2719–2724CrossRef Tsuji H, Horii F, Hyon SH et al (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated-solutions. Macromolecules 24:2719–2724CrossRef
74.
Zurück zum Zitat Tsuji H (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41:3621–3630CrossRef Tsuji H (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41:3621–3630CrossRef
75.
Zurück zum Zitat Brochu S, Prudhomme RE, Barakat I et al (1995) Stereocomplexation and morphology of polylactides. Macromolecules 28:5230–5239CrossRef Brochu S, Prudhomme RE, Barakat I et al (1995) Stereocomplexation and morphology of polylactides. Macromolecules 28:5230–5239CrossRef
76.
Zurück zum Zitat Brizzolara D, Cantow HJ, Diederichs K et al (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197CrossRef Brizzolara D, Cantow HJ, Diederichs K et al (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197CrossRef
77.
Zurück zum Zitat Hoogsteen W, Postema AR, Pennings AJ et al (1990) Crystal-structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRef Hoogsteen W, Postema AR, Pennings AJ et al (1990) Crystal-structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRef
78.
Zurück zum Zitat Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun 21:464–471CrossRef Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun 21:464–471CrossRef
79.
Zurück zum Zitat de Jong SJ, De Smedt SC, Wahls MWC et al (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRef de Jong SJ, De Smedt SC, Wahls MWC et al (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRef
80.
Zurück zum Zitat de Jong SJ, De Smedt SC, Demeester J et al (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Controlled Release 72:47–56CrossRef de Jong SJ, De Smedt SC, Demeester J et al (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Controlled Release 72:47–56CrossRef
81.
Zurück zum Zitat de Jong SJ, van Eerdenbrugh B, van Nostrum CF et al (2001) Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J Controlled Release 71:261–275CrossRef de Jong SJ, van Eerdenbrugh B, van Nostrum CF et al (2001) Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J Controlled Release 71:261–275CrossRef
82.
Zurück zum Zitat Fujiwara T, Mukose T, Yamaoka T et al (2001) Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA–PEG–PLLA and PDLA–PEG–PDLA block copolymers. Macromol Biosci 1:204–208CrossRef Fujiwara T, Mukose T, Yamaoka T et al (2001) Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA–PEG–PLLA and PDLA–PEG–PDLA block copolymers. Macromol Biosci 1:204–208CrossRef
83.
Zurück zum Zitat Mukose T, Fujiwara T, Nakano J et al (2004) Hydrogel formation between enantiomeric B-A-B-type block copolymers of polylactides (PLLA or PDLA: A) and polyoxyethylene (PEG: B); PEG–PLLA–PEG and PEG–PDLA–PEG. Macromol Biosci 4:361–367CrossRef Mukose T, Fujiwara T, Nakano J et al (2004) Hydrogel formation between enantiomeric B-A-B-type block copolymers of polylactides (PLLA or PDLA: A) and polyoxyethylene (PEG: B); PEG–PLLA–PEG and PEG–PDLA–PEG. Macromol Biosci 4:361–367CrossRef
84.
Zurück zum Zitat Li SM, Vert M (2003) Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of l(d)-lactide in the presence of poly(ethylene glycol). Macromolecules 36:8008–8014CrossRef Li SM, Vert M (2003) Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of l(d)-lactide in the presence of poly(ethylene glycol). Macromolecules 36:8008–8014CrossRef
85.
Zurück zum Zitat Hiemstra C, Zhong ZY, Li LB et al (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)(8) and PEG-(PDLA)(8) star block copolymers. Biomacromolecules 7:2790–2795CrossRef Hiemstra C, Zhong ZY, Li LB et al (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)(8) and PEG-(PDLA)(8) star block copolymers. Biomacromolecules 7:2790–2795CrossRef
86.
Zurück zum Zitat Hiemstra C, Zhong Z, Van Tomme SR et al (2007) In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J Controlled Release 119:320–327CrossRef Hiemstra C, Zhong Z, Van Tomme SR et al (2007) In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J Controlled Release 119:320–327CrossRef
87.
Zurück zum Zitat Hiemstra C, Zhou W, Zhong ZY et al (2007) Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. J Am Chem Soc 129:9918–9926CrossRef Hiemstra C, Zhou W, Zhong ZY et al (2007) Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. J Am Chem Soc 129:9918–9926CrossRef
88.
Zurück zum Zitat Chung HJ, Lee YH, Park TG (2008) Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J Controlled Release 127:22–30CrossRef Chung HJ, Lee YH, Park TG (2008) Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J Controlled Release 127:22–30CrossRef
89.
Zurück zum Zitat Fujiwara T, Miyamoto M, Kimura Y (2000) Crystallization-induced morphological changes of a poly(l-lactide)/poly(oxyethylene) diblock copolymer from sphere to band via disk: a novel macromolecular self-organization process from core-shell nanoparticles on surface. Macromolecules 33:2782–2785CrossRef Fujiwara T, Miyamoto M, Kimura Y (2000) Crystallization-induced morphological changes of a poly(l-lactide)/poly(oxyethylene) diblock copolymer from sphere to band via disk: a novel macromolecular self-organization process from core-shell nanoparticles on surface. Macromolecules 33:2782–2785CrossRef
90.
Zurück zum Zitat Fujiwara T, Miyamoto M, Kimura Y et al (2001) Self-organization of diblock and triblock copolymers of poly(l-lactide) and poly(oxyethylene) into nanostructured bands and their network system. Proposition of a doubly twisted chain conformation of poly(l-lactide). Macromolecules 34:4043–4050CrossRef Fujiwara T, Miyamoto M, Kimura Y et al (2001) Self-organization of diblock and triblock copolymers of poly(l-lactide) and poly(oxyethylene) into nanostructured bands and their network system. Proposition of a doubly twisted chain conformation of poly(l-lactide). Macromolecules 34:4043–4050CrossRef
91.
Zurück zum Zitat Fujiwara T, Kimura Y (2002) Macromolecular organization of poly(l-lactide)-block-polyoxyethylene into bio-inspired nano-architectures. Macromol Biosci 2:11–23CrossRef Fujiwara T, Kimura Y (2002) Macromolecular organization of poly(l-lactide)-block-polyoxyethylene into ­bio-inspired nano-architectures. Macromol Biosci 2:11–23CrossRef
92.
Zurück zum Zitat Fujiwara T, Miyamoto M, Kimura Y et al (2001) Intriguing morphology transformation due to the macromolecular rearrangement of poly(l-lactide)-block-poly(oxyethylene): from core-shell nanoparticles to band structures via fragments of unimolecular size. Polymer 42:1515–1523CrossRef Fujiwara T, Miyamoto M, Kimura Y et al (2001) Intriguing morphology transformation due to the macromole­cular rearrangement of poly(l-lactide)-block-poly(oxyethylene): from core-shell nanoparticles to band ­structures via fragments of unimolecular size. Polymer 42:1515–1523CrossRef
93.
Zurück zum Zitat Lee D, Teraoka I (2002) Termini and main-chain composition of monomethoxy-terminated poly(ethylene glycol) studied by two-dimensional column chromatography. Polymer 43:2691–2697CrossRef Lee D, Teraoka I (2002) Termini and main-chain composition of monomethoxy-terminated poly(ethylene ­glycol) studied by two-dimensional column chromatography. Polymer 43:2691–2697CrossRef
94.
Zurück zum Zitat Lee D, Teraoka I (2003) Removal of dihydroxy-terminated components from monomethoxy-terminated poly(ethylene glycol). Biomaterials 24:329–336CrossRef Lee D, Teraoka I (2003) Removal of dihydroxy-terminated components from monomethoxy-terminated poly(ethylene glycol). Biomaterials 24:329–336CrossRef
95.
Zurück zum Zitat Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRef Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRef
Metadaten
Titel
Thermo-Responsive Biodegradable Hydrogels from Stereocomplexed Poly(lactide)s
verfasst von
Tomoko Fujiwara
Tetsuji Yamaoka
Yoshiharu Kimura
Copyright-Jahr
2010
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-5919-5_9