Skip to main content
Erschienen in: Wood Science and Technology 2/2018

04.11.2017 | Original

Thermochemical conversion of red pine wood, Pinus densiflora to biopolyol using biobutanediol-mediated solvolysis for biopolyurethane preparation

verfasst von: Yumi Lee, Eun Yeol Lee

Erschienen in: Wood Science and Technology | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biopolyol production from lignocellulosic biomass is one of the promising strategies for environmentally benign bioplastic production. In this study, red pine wood Pinus densiflora biomass, the most abundant softwood biomass in Korea, was liquefied using biobutanediol solvent to obtain a 100% bio-based polyol. When the 15% (w/w) biomass liquefied with 2,3-butanediol (levo) in the presence of 3% (w/w) sulfuric acid at 130 °C for 60 min, highest biomass conversion was observed at 53.2% and it showed 864.4 mg KOH/g of hydroxyl number and 21.5 mg KOH/g of acid number. Liquefied biopolyol was directly used for biopolyurethane synthesis using tolylene-2,4-diisocyanate. The 5% weight loss temperature (Td5) was at 210 °C in the first decomposition stage. Replacement of petrochemical polyhydric alcohol with biobutanediol showed possibility of biopolyol-based bioplastic production from red pine wood.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Briones R, Serrano L, Llano-Ponte R, Labidi J (2011) Polyols obtained from solvolysis liquefaction of biodiesel production solid residues. Chem Eng J 175:169–175CrossRef Briones R, Serrano L, Llano-Ponte R, Labidi J (2011) Polyols obtained from solvolysis liquefaction of biodiesel production solid residues. Chem Eng J 175:169–175CrossRef
Zurück zum Zitat Chauhan M, Gupta M, Singh B, Singh AK, Gupta VK (2014) Effect of functionalized lignin on the properties of lignin–isocyanate prepolymer blends and composites. Eur Polym J 52:32–43CrossRef Chauhan M, Gupta M, Singh B, Singh AK, Gupta VK (2014) Effect of functionalized lignin on the properties of lignin–isocyanate prepolymer blends and composites. Eur Polym J 52:32–43CrossRef
Zurück zum Zitat Chen F, Lu Z (2009) Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J Appl Polym Sci 111:508–516CrossRef Chen F, Lu Z (2009) Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J Appl Polym Sci 111:508–516CrossRef
Zurück zum Zitat Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI (2004) Properties of lignin–polyurethane films prepared by casting method. Ind Crop Prod 20:231–241CrossRef Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI (2004) Properties of lignin–polyurethane films prepared by casting method. Ind Crop Prod 20:231–241CrossRef
Zurück zum Zitat dos Santos RG, Carvalho R, Silva ER, Bordado JC, Cardoso AC, do Rosário Costa M, Mateus MM (2016) Natural polymeric water-based adhesive from cork liquefaction. Ind Crop Prod 84:314–319CrossRef dos Santos RG, Carvalho R, Silva ER, Bordado JC, Cardoso AC, do Rosário Costa M, Mateus MM (2016) Natural polymeric water-based adhesive from cork liquefaction. Ind Crop Prod 84:314–319CrossRef
Zurück zum Zitat Gong G, Zou X (2016) Preparation and characterization of biopolyol via liquefaction of rice straw. Russ J Appl Chem 89:1360–1364CrossRef Gong G, Zou X (2016) Preparation and characterization of biopolyol via liquefaction of rice straw. Russ J Appl Chem 89:1360–1364CrossRef
Zurück zum Zitat Griffiths TR, Pugh DC (1979) Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from cu. Coord Chem Rev 29:129–211CrossRef Griffiths TR, Pugh DC (1979) Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from cu. Coord Chem Rev 29:129–211CrossRef
Zurück zum Zitat Hakim AA, Nassar M, Emam A, Sultan M (2011) Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys 129:301–307CrossRef Hakim AA, Nassar M, Emam A, Sultan M (2011) Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys 129:301–307CrossRef
Zurück zum Zitat Hu S, Li Y (2014) Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresour Technol 161:410–415CrossRefPubMed Hu S, Li Y (2014) Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresour Technol 161:410–415CrossRefPubMed
Zurück zum Zitat Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227–233CrossRefPubMed Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227–233CrossRefPubMed
Zurück zum Zitat Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. Chemsuschem 7:66–72CrossRefPubMed Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. Chemsuschem 7:66–72CrossRefPubMed
Zurück zum Zitat Jasiukaitytė E, Kunaver M, Strlič M (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16:393–405CrossRef Jasiukaitytė E, Kunaver M, Strlič M (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16:393–405CrossRef
Zurück zum Zitat Ji XJ, Huang H, Ouyang PK (2011) Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364CrossRefPubMed Ji XJ, Huang H, Ouyang PK (2011) Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364CrossRefPubMed
Zurück zum Zitat Jin Y, Ruan X, Cheng X, Lü Q (2011) Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol 102:3581–3583CrossRefPubMed Jin Y, Ruan X, Cheng X, Lü Q (2011) Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol 102:3581–3583CrossRefPubMed
Zurück zum Zitat Jo YJ, Ly HV, Kim J, Kim SS, Lee EY (2015) Preparation of biopolyol by liquefaction of palm kernel cake using PEG# 400 blended glycerol. J Ind Eng Chem 29:304–313CrossRef Jo YJ, Ly HV, Kim J, Kim SS, Lee EY (2015) Preparation of biopolyol by liquefaction of palm kernel cake using PEG# 400 blended glycerol. J Ind Eng Chem 29:304–313CrossRef
Zurück zum Zitat Kim KH, Jo YJ, Lee CG, Lee EY (2015) Solvothermal liquefaction of microalgal Tetraselmis sp. biomass to prepare biopolyols by using PEG# 400-blended glycerol. Algal Res 12:539–544CrossRef Kim KH, Jo YJ, Lee CG, Lee EY (2015) Solvothermal liquefaction of microalgal Tetraselmis sp. biomass to prepare biopolyols by using PEG# 400-blended glycerol. Algal Res 12:539–544CrossRef
Zurück zum Zitat Lee JH, Lee EY (2016a) Biobutanediol-mediated liquefaction of empty fruit bunch saccharification residues to prepare lignin biopolyols. Bioresour Technol 208:24–30CrossRefPubMed Lee JH, Lee EY (2016a) Biobutanediol-mediated liquefaction of empty fruit bunch saccharification residues to prepare lignin biopolyols. Bioresour Technol 208:24–30CrossRefPubMed
Zurück zum Zitat Lee Y, Lee EY (2016b) Liquefaction of Red Pine Wood, Pinus densiflora Biomass Using PEG-400-Blended Crude Glycerol for Biopolyol and Biopolyurethane Production. J Wood Chem Technol 36:353–364CrossRef Lee Y, Lee EY (2016b) Liquefaction of Red Pine Wood, Pinus densiflora Biomass Using PEG-400-Blended Crude Glycerol for Biopolyol and Biopolyurethane Production. J Wood Chem Technol 36:353–364CrossRef
Zurück zum Zitat Lee SH, Yoshioka M, Shiraishi N (2000) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J Appl Polym Sci 78:319–325CrossRef Lee SH, Yoshioka M, Shiraishi N (2000) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J Appl Polym Sci 78:319–325CrossRef
Zurück zum Zitat Lee JH, Lee JH, Kim DK, Park CH, Yu JH, Lee EY (2016) Crude glycerol-mediated liquefaction of empty fruit bunches saccharification residues for preparation of biopolyurethane. J Ind Eng Chem 34:157–164CrossRef Lee JH, Lee JH, Kim DK, Park CH, Yu JH, Lee EY (2016) Crude glycerol-mediated liquefaction of empty fruit bunches saccharification residues for preparation of biopolyurethane. J Ind Eng Chem 34:157–164CrossRef
Zurück zum Zitat Lee EY, Hwang IY, Oh SH (2017) Process for preparing 2,3-butanediol using transformant. KR patent 10-2017-0003301 Lee EY, Hwang IY, Oh SH (2017) Process for preparing 2,3-butanediol using transformant. KR patent 10-2017-0003301
Zurück zum Zitat Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Hao C, Tao F, Ma C, Xu P (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27CrossRefPubMed Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Hao C, Tao F, Ma C, Xu P (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27CrossRefPubMed
Zurück zum Zitat Luo X, Hu S, Zhang X, Li Y (2013) Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol 139:323–329CrossRefPubMed Luo X, Hu S, Zhang X, Li Y (2013) Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol 139:323–329CrossRefPubMed
Zurück zum Zitat Nadji H, Bruzzèse C, Belgacem MN, Benaboura A, Gandini A (2005) Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol Mater Eng 290:1009–1016CrossRef Nadji H, Bruzzèse C, Belgacem MN, Benaboura A, Gandini A (2005) Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol Mater Eng 290:1009–1016CrossRef
Zurück zum Zitat Park JM, Rathnasingh C, Song H (2015) Enhanced production of (R, R)-2, 3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol 42:1419–1425CrossRefPubMed Park JM, Rathnasingh C, Song H (2015) Enhanced production of (R, R)-2, 3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol 42:1419–1425CrossRefPubMed
Zurück zum Zitat Qi G, Zhang H, Huang C, Guo H, Xiong L, Wang C, Chen X (2016) Liquefaction and characterization of residue of oleaginous yeast in polyhydric alcohols. Korean J Chem Eng 33:2858–2862CrossRef Qi G, Zhang H, Huang C, Guo H, Xiong L, Wang C, Chen X (2016) Liquefaction and characterization of residue of oleaginous yeast in polyhydric alcohols. Korean J Chem Eng 33:2858–2862CrossRef
Zurück zum Zitat Xu J, Jiang J, Hse C, Shupe TF (2012) Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem 14:2821–2830CrossRef Xu J, Jiang J, Hse C, Shupe TF (2012) Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem 14:2821–2830CrossRef
Zurück zum Zitat Yamada T, Ono H (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour Technol 70:61–67CrossRef Yamada T, Ono H (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour Technol 70:61–67CrossRef
Zurück zum Zitat Yamada T, Ono H (2001) Characterization of the products resulting from ethylene glycol liquefaction of cellulose. J Wood Sci 47:458–464CrossRef Yamada T, Ono H (2001) Characterization of the products resulting from ethylene glycol liquefaction of cellulose. J Wood Sci 47:458–464CrossRef
Zurück zum Zitat Ye L, Zhang J, Zhao J, Tu S (2014) Liquefaction of bamboo shoot shell for the production of polyols. Bioresour Technol 153:147–153CrossRefPubMed Ye L, Zhang J, Zhao J, Tu S (2014) Liquefaction of bamboo shoot shell for the production of polyols. Bioresour Technol 153:147–153CrossRefPubMed
Zurück zum Zitat Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Dien SV (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452CrossRefPubMed Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Dien SV (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452CrossRefPubMed
Zurück zum Zitat Yue D, Oribayo O, Rempel GL, Pan Q (2017) Liquefaction of waste pine wood and its application in the synthesis of a flame retardant polyurethane foam. RSC Adv 7:30334–30344CrossRef Yue D, Oribayo O, Rempel GL, Pan Q (2017) Liquefaction of waste pine wood and its application in the synthesis of a flame retardant polyurethane foam. RSC Adv 7:30334–30344CrossRef
Zurück zum Zitat Zhang H, Ding F, Luo C, Xiong L, Chen X (2012) Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols. Ind Crop Prod 39:47–51CrossRef Zhang H, Ding F, Luo C, Xiong L, Chen X (2012) Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols. Ind Crop Prod 39:47–51CrossRef
Zurück zum Zitat Zhang H, Yang H, Guo H, Huang C, Xiong L, Chen X (2014) Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols. Appl Energy 113:1596–1600CrossRef Zhang H, Yang H, Guo H, Huang C, Xiong L, Chen X (2014) Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols. Appl Energy 113:1596–1600CrossRef
Zurück zum Zitat Zhang Q, Zhang G, Han D, Wu Y (2016) Renewable chemical feedstocks from peanut shell liquefaction: preparation and characterization of liquefied products and residue. J Appl Polym Sci 133:44162 Zhang Q, Zhang G, Han D, Wu Y (2016) Renewable chemical feedstocks from peanut shell liquefaction: preparation and characterization of liquefied products and residue. J Appl Polym Sci 133:44162
Zurück zum Zitat Zhao Y, Yan N, Feng M (2012) Polyurethane foams derived from liquefied mountain pine beetle-infested barks. J Appl Polym Sci 123:2849–2858CrossRef Zhao Y, Yan N, Feng M (2012) Polyurethane foams derived from liquefied mountain pine beetle-infested barks. J Appl Polym Sci 123:2849–2858CrossRef
Zurück zum Zitat Zheng Z, Pan H, Huang Y, Chung Y, Zhang X, Feng H (2011) Rapid liquefaction of wood in polyhydric alcohols under microwave heating and its liquefied products for preparation of rigid polyurethane foam. Open Mater Sci J 5:1–8CrossRef Zheng Z, Pan H, Huang Y, Chung Y, Zhang X, Feng H (2011) Rapid liquefaction of wood in polyhydric alcohols under microwave heating and its liquefied products for preparation of rigid polyurethane foam. Open Mater Sci J 5:1–8CrossRef
Zurück zum Zitat Zhuravlev VI, Usacheva TM, Lifanova NV, Vydrina EP (2008) Dielectric properties of polyhydric alcohols: butanediols. Russ J Gen Chem 78:1189CrossRef Zhuravlev VI, Usacheva TM, Lifanova NV, Vydrina EP (2008) Dielectric properties of polyhydric alcohols: butanediols. Russ J Gen Chem 78:1189CrossRef
Zurück zum Zitat Zou X, Qin T, Huang L, Zhang X, Yang Z, Wang Y (2009) Mechanisms and main regularities of biomass liquefaction with alcoholic solvents. Energy Fuels 23:5213–5218CrossRef Zou X, Qin T, Huang L, Zhang X, Yang Z, Wang Y (2009) Mechanisms and main regularities of biomass liquefaction with alcoholic solvents. Energy Fuels 23:5213–5218CrossRef
Metadaten
Titel
Thermochemical conversion of red pine wood, Pinus densiflora to biopolyol using biobutanediol-mediated solvolysis for biopolyurethane preparation
verfasst von
Yumi Lee
Eun Yeol Lee
Publikationsdatum
04.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Wood Science and Technology / Ausgabe 2/2018
Print ISSN: 0043-7719
Elektronische ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-017-0969-7

Weitere Artikel der Ausgabe 2/2018

Wood Science and Technology 2/2018 Zur Ausgabe

IAWS NEWS

IAWS News