Skip to main content

2013 | OriginalPaper | Buchkapitel

5. Thermochemical Water-Splitting Cycles

verfasst von : Greg F. Naterer, Ibrahim Dincer, Calin Zamfirescu

Erschienen in: Hydrogen Production from Nuclear Energy

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents and analyzes thermochemical cycles, which are promising methods of nuclear produced hydrogen at a large scale. The introduction presents the origins of concepts and a historical perspective on the technology development. In the first part, the most important aspects and fundamental concepts for cycle modeling and synthesis are introduced and detailed. The discussion proceeds from single-step thermochemical water-splitting processes, to two-step and multi-step processes, followed by a presentation of hybrid cycles. Relevant analysis methods are introduced in the context of each type of cycle presentation. These concepts include chemical equilibrium, chemical kinetics, reaction rate and yield, and others. Analysis of the practicality of chemical reactions is established based on their yield. A large number of reactions and thermochemical cycles are compiled, categorized, and discussed. In total, the chapter presents 122 thermochemical cycles, 25 hybrid cycles, and six special cycles (assisted with photonic or nuclear radiation).
The most important reactions, encountered in pure and hybrid cycles, are analyzed in detail. For example, both the Deacon reaction and H2SO4 decomposition methods are the most encountered oxygen-evolving reactions. Hydrogen iodide decomposition has a major role as a hydrogen-evolving reaction. The Bunsen reaction is also significant. In thermochemical cycle synthesis and assessment, it is important to account for the energy associated with chemical separation, chemical recycling, and material transport; this is explained and exemplified in the chapter. Another discussion involves cycle synthesis and a down selection process, a methodology that systematically leads to identification of the most promising cycles. A comparative assessment of cycles is presented and the use of exergy as a potential analysis tool is introduced. The final part of the chapter refers to three thermochemical plants which are considered as the most promising. These are plants based on the sulfur–iodine cycle, the hybrid sulfur cycle, and the hybrid copper–chlorine cycle. Some bench-scale or pilot plants exist for the sulfur–iodine and hybrid sulfur plants and they are in the course of development for the copper–chlorine cycle.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermo-chemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2469–2486CrossRef Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermo-chemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2469–2486CrossRef
Zurück zum Zitat Andress RJ, Martin LL (2010) On the synthesis of hydrogen production alternative thermochemical cycles with electrochemical steps. Int J Hydrogen Energy 35:958–965CrossRef Andress RJ, Martin LL (2010) On the synthesis of hydrogen production alternative thermochemical cycles with electrochemical steps. Int J Hydrogen Energy 35:958–965CrossRef
Zurück zum Zitat Balta MT, Dincer I, Hepbasli A (2010) Potential methods for geothermal-based hydrogen production. Int J Hydrogen Energy 35:4949–4961CrossRef Balta MT, Dincer I, Hepbasli A (2010) Potential methods for geothermal-based hydrogen production. Int J Hydrogen Energy 35:4949–4961CrossRef
Zurück zum Zitat Bamberger CE (1978) Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 18:170–183CrossRef Bamberger CE (1978) Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 18:170–183CrossRef
Zurück zum Zitat Beghi GE (1986) A decade of research on thermochemical hydrogen at the joint research centre, Ispra. Int J Hydrogen Energy 11:761–771CrossRef Beghi GE (1986) A decade of research on thermochemical hydrogen at the joint research centre, Ispra. Int J Hydrogen Energy 11:761–771CrossRef
Zurück zum Zitat Bilgen E, Bilgen C (1982) Solar hydrogen production using two-step thermochemical cycles. Int J Hydrogen Energy 7:637–644CrossRef Bilgen E, Bilgen C (1982) Solar hydrogen production using two-step thermochemical cycles. Int J Hydrogen Energy 7:637–644CrossRef
Zurück zum Zitat Brecher LE, Spewock S, Warde CJ (1977) The Westinghouse sulfur cycle for the thermochemical decomposition of water. Int J Hydrogen Energy 2:7–15CrossRef Brecher LE, Spewock S, Warde CJ (1977) The Westinghouse sulfur cycle for the thermochemical decomposition of water. Int J Hydrogen Energy 2:7–15CrossRef
Zurück zum Zitat Brown LC, Besenbruch GE, Schultz KR, Showalter SK, Marshall AC, Pickard PS, Funk JF (2002) High efficiency generation of hydrogen fuels using thermochemical cycles and nuclear power. General Atomics Report GA-A24326 Brown LC, Besenbruch GE, Schultz KR, Showalter SK, Marshall AC, Pickard PS, Funk JF (2002) High efficiency generation of hydrogen fuels using thermochemical cycles and nuclear power. General Atomics Report GA-A24326
Zurück zum Zitat Carty RH, Cogner WL (1980) A heat penalty and economic analyses of the hybrid sulfuric acid process. Int J Hydrogen Energ 5:7–20CrossRef Carty RH, Cogner WL (1980) A heat penalty and economic analyses of the hybrid sulfuric acid process. Int J Hydrogen Energ 5:7–20CrossRef
Zurück zum Zitat Carty RH, Mazumder MM, Schreider JD, Pangborn JB (1981) Thermochemical hydrogen production, vols. 1–4. Gas Research Institute, Chicago, IL, Report GRI-80/0023 Carty RH, Mazumder MM, Schreider JD, Pangborn JB (1981) Thermochemical hydrogen production, vols. 1–4. Gas Research Institute, Chicago, IL, Report GRI-80/0023
Zurück zum Zitat Chao RE (1974) Thermochemical water decomposition process. Industrial Eng Chem, Process Res Develop 13:94–101CrossRef Chao RE (1974) Thermochemical water decomposition process. Industrial Eng Chem, Process Res Develop 13:94–101CrossRef
Zurück zum Zitat Chikazawa Y, Nakagiri T, Konomura M (2006) A system design study of fast breeder reactor hydrogen production plant using thermochemical and electrolytic hybrid process. Nuclear Technol 155:340–349 Chikazawa Y, Nakagiri T, Konomura M (2006) A system design study of fast breeder reactor hydrogen production plant using thermochemical and electrolytic hybrid process. Nuclear Technol 155:340–349
Zurück zum Zitat Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–137CrossRef Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–137CrossRef
Zurück zum Zitat Dincer I, Zamfirescu C (2011) Sustainable energy systems and applications. Springer, New York Dincer I, Zamfirescu C (2011) Sustainable energy systems and applications. Springer, New York
Zurück zum Zitat Dokyia M, Kotera Y (1976) Hybrid cycle with electrolysis using Cu-Cl system. Int J Hydrogen Energy 1:117–121CrossRef Dokyia M, Kotera Y (1976) Hybrid cycle with electrolysis using Cu-Cl system. Int J Hydrogen Energy 1:117–121CrossRef
Zurück zum Zitat Dokyia M, Fukuda K, Kameyama T, Kotera Y, Asakura S (1977) The study of thermochemical hydrogen preparation. (II) Electrochemical hybrid cycle using sulphur-iodine system. Denki Kagaku (Electrochemistry, Jpn) 45:139–143 Dokyia M, Fukuda K, Kameyama T, Kotera Y, Asakura S (1977) The study of thermochemical hydrogen preparation. (II) Electrochemical hybrid cycle using sulphur-iodine system. Denki Kagaku (Electrochemistry, Jpn) 45:139–143
Zurück zum Zitat Dokyia M, Kameyama T, Fukuda K (1979) Thermochemical hydrogen preparation—Part V. A feasibility study of the sulphur iodine cycle. Int J Hydrogen Energy 4:267–277CrossRef Dokyia M, Kameyama T, Fukuda K (1979) Thermochemical hydrogen preparation—Part V. A feasibility study of the sulphur iodine cycle. Int J Hydrogen Energy 4:267–277CrossRef
Zurück zum Zitat Ewan BCR, Allen RWK (2005) Assessing the Efficiency Limits for Hydrogen Production by Thermochemical Cycles. AIChE annual meeting, Cincinnati 30 October–4 November 2005, Paper 210c Ewan BCR, Allen RWK (2005) Assessing the Efficiency Limits for Hydrogen Production by Thermochemical Cycles. AIChE annual meeting, Cincinnati 30 October–4 November 2005, Paper 210c
Zurück zum Zitat Fishtik I, Datta R (2008) Systematic generation of thermochemical cycles for water splitting. Comput Chem Eng 32:1625–1634CrossRef Fishtik I, Datta R (2008) Systematic generation of thermochemical cycles for water splitting. Comput Chem Eng 32:1625–1634CrossRef
Zurück zum Zitat Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 26:158–190CrossRef Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 26:158–190CrossRef
Zurück zum Zitat Funk JE, Reinstrom RM (1964) Final report energy depot electrolysis systems study. TID 20441 (EDR 3714), Vol. 2, Suppl. A. Funk JE, Reinstrom RM (1964) Final report energy depot electrolysis systems study. TID 20441 (EDR 3714), Vol. 2, Suppl. A.
Zurück zum Zitat Funk JE, Reinstrom RM (1966) Energy requirement in the production of hydrogen from water. Ind Eng Chem Process Des Develop 5:336–342 Funk JE, Reinstrom RM (1966) Energy requirement in the production of hydrogen from water. Ind Eng Chem Process Des Develop 5:336–342
Zurück zum Zitat Gorensek MG, Summers WA (2009) Hybrid sulfur flowsheets using PEM electrolysis and a bayonet decomposition reactor. Int J Hydrogen Energy 34:4097–4114CrossRef Gorensek MG, Summers WA (2009) Hybrid sulfur flowsheets using PEM electrolysis and a bayonet decomposition reactor. Int J Hydrogen Energy 34:4097–4114CrossRef
Zurück zum Zitat Grimes PG (1966) Energy depot fuel production and utilization. SAE Transactions 74:65001 Grimes PG (1966) Energy depot fuel production and utilization. SAE Transactions 74:65001
Zurück zum Zitat Kamita N, Ohta T, Asano N (1984) Hybridized hydrogen production system with Fe-I photochemical reaction in concentrated phosphoric acid. Int J Hydrogen Energy 9:563–570CrossRef Kamita N, Ohta T, Asano N (1984) Hybridized hydrogen production system with Fe-I photochemical reaction in concentrated phosphoric acid. Int J Hydrogen Energy 9:563–570CrossRef
Zurück zum Zitat Kasahara S, Kubo S, Hino R, Onuki K, Nomura M, Nakao S (2007) Flow-sheet study of the thermochemical water splitting iodine-sulfur process for effective hydrogen production. Int J Hydrogen Energy 32:489–496CrossRef Kasahara S, Kubo S, Hino R, Onuki K, Nomura M, Nakao S (2007) Flow-sheet study of the thermochemical water splitting iodine-sulfur process for effective hydrogen production. Int J Hydrogen Energy 32:489–496CrossRef
Zurück zum Zitat Knoche KF, Cremer H, Breywisch D, Hegels S, Steinborn G, Wüster G (1978) Experimental and theoretical investigation of thermochemical hydrogen production. Int J Hydrogen Energy 3:209–216CrossRef Knoche KF, Cremer H, Breywisch D, Hegels S, Steinborn G, Wüster G (1978) Experimental and theoretical investigation of thermochemical hydrogen production. Int J Hydrogen Energy 3:209–216CrossRef
Zurück zum Zitat Lede J, Lapicque F, Villermaux J, Gales B, Ounalli A, Baumard JF, Anthony AM (1982) Production of hydrogen by direct thermal decomposition of water: preliminary investigations. Int J Hydrogen Energy 7:939–950CrossRef Lede J, Lapicque F, Villermaux J, Gales B, Ounalli A, Baumard JF, Anthony AM (1982) Production of hydrogen by direct thermal decomposition of water: preliminary investigations. Int J Hydrogen Energy 7:939–950CrossRef
Zurück zum Zitat Lewis MA, Masin JG, O’HAre PA (2009) Evaluation of alternative themochemical cycles, Part I: the methodology. Int J Hydrogen Energ 34:4115–4124CrossRef Lewis MA, Masin JG, O’HAre PA (2009) Evaluation of alternative themochemical cycles, Part I: the methodology. Int J Hydrogen Energ 34:4115–4124CrossRef
Zurück zum Zitat Lewis MA, Masin JG (2009) The evaluation of alternative thermochemical cycles – Part II: The down-selection process. Int J Hydrogen Energy 34:4125–4135CrossRef Lewis MA, Masin JG (2009) The evaluation of alternative thermochemical cycles – Part II: The down-selection process. Int J Hydrogen Energy 34:4125–4135CrossRef
Zurück zum Zitat Lu PWT, Garcia ER, Ammon RL (1981) Recent developments in the technology of sulfur dioxide depolarized electrolysis. J Appl Electrochem 11:347–355CrossRef Lu PWT, Garcia ER, Ammon RL (1981) Recent developments in the technology of sulfur dioxide depolarized electrolysis. J Appl Electrochem 11:347–355CrossRef
Zurück zum Zitat Marin GD, Wang Z, Naterer GF, Gabriel K (2011) Byproducts and reaction pathways for integration of the CueCl cycle of hydrogen production. Int J Hydrogen Energy 36:13414–13424CrossRef Marin GD, Wang Z, Naterer GF, Gabriel K (2011) Byproducts and reaction pathways for integration of the CueCl cycle of hydrogen production. Int J Hydrogen Energy 36:13414–13424CrossRef
Zurück zum Zitat McQuillan BW, Brown LC, Besenbruch GE, Tolman R, Cramer T, Russ BE, Vermillion BA, Earl B, Hsieh H-T, Chen Y, Kwan K, Diver R, Siegal N, Weimer A, Perkins C, Lewandowski A (2010) High efficiency generation of hydrogen fuels using solar thermal-chemical splitting of water. General Atomics Project 3022 McQuillan BW, Brown LC, Besenbruch GE, Tolman R, Cramer T, Russ BE, Vermillion BA, Earl B, Hsieh H-T, Chen Y, Kwan K, Diver R, Siegal N, Weimer A, Perkins C, Lewandowski A (2010) High efficiency generation of hydrogen fuels using solar thermal-chemical splitting of water. General Atomics Project 3022
Zurück zum Zitat Nakamura T (1977) Hydrogen production from water utilising solar heat at high temperatures. Solar Energy 19:467–475CrossRef Nakamura T (1977) Hydrogen production from water utilising solar heat at high temperatures. Solar Energy 19:467–475CrossRef
Zurück zum Zitat Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Luf L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011a) Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, I: Experimental unit operations. Int J Hydrogen Energy 36:15472–15485CrossRef Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Luf L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011a) Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, I: Experimental unit operations. Int J Hydrogen Energy 36:15472–15485CrossRef
Zurück zum Zitat Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Luf L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011b) Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, II: Simulations, thermochemical data and materials. Int J Hydrogen Energy 36:15486–15501CrossRef Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Luf L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011b) Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, II: Simulations, thermochemical data and materials. Int J Hydrogen Energy 36:15486–15501CrossRef
Zurück zum Zitat Nomura M, Nakao S, Okuda H, Fujiwara S, Kasahara S, Ikenoya K, Kubo S, Onuki K (2004) Development of an electrochemical cell for efficient hydrogen production through the IS process. AIChE J 50:1991–1998CrossRef Nomura M, Nakao S, Okuda H, Fujiwara S, Kasahara S, Ikenoya K, Kubo S, Onuki K (2004) Development of an electrochemical cell for efficient hydrogen production through the IS process. AIChE J 50:1991–1998CrossRef
Zurück zum Zitat Ohta T, Asakura S, Yamaguchi M, Kamiya N, Gotoh H, Otagawa T (1976) Photochemical and thermoelectric utilisation of solar energy in a hybrid water splitting system. Int J Hydrogen Energy 1:113–116CrossRef Ohta T, Asakura S, Yamaguchi M, Kamiya N, Gotoh H, Otagawa T (1976) Photochemical and thermoelectric utilisation of solar energy in a hybrid water splitting system. Int J Hydrogen Energy 1:113–116CrossRef
Zurück zum Zitat Perret R (2011) Solar thermochemical hydrogen production. Thermochemical cycle selection and investment priority. Sandia National Laboratory, Report 3622 Perret R (2011) Solar thermochemical hydrogen production. Thermochemical cycle selection and investment priority. Sandia National Laboratory, Report 3622
Zurück zum Zitat Rosen MA (2008) Exergy analysis of hydrogen production by thermochemical water decomposition using the Ispra Mark-10 Cycle. Int J Hydrogen Energy 33:6921–6933CrossRef Rosen MA (2008) Exergy analysis of hydrogen production by thermochemical water decomposition using the Ispra Mark-10 Cycle. Int J Hydrogen Energy 33:6921–6933CrossRef
Zurück zum Zitat Rosen MA (2010) Advances in hydrogen production by thermochemical water decomposition: A review. Energy 35:1068–1076CrossRef Rosen MA (2010) Advances in hydrogen production by thermochemical water decomposition: A review. Energy 35:1068–1076CrossRef
Zurück zum Zitat Rosen MA, Scott DS (1992) Exergy analysis of hydrogen production from heat and water by electrolysis. Int J Hydrogen Energy 17:199–204CrossRef Rosen MA, Scott DS (1992) Exergy analysis of hydrogen production from heat and water by electrolysis. Int J Hydrogen Energy 17:199–204CrossRef
Zurück zum Zitat Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21:865–870CrossRef Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21:865–870CrossRef
Zurück zum Zitat Sato S (1979) Thermochemical hydrogen production. In: Otha T (ed) Solar-hydrogen energy systems. Pergamon, New York Sato S (1979) Thermochemical hydrogen production. In: Otha T (ed) Solar-hydrogen energy systems. Pergamon, New York
Zurück zum Zitat Savage RL, Blank L, Cady T, Cox K, Murray R, Dee Williams R (1973) A hydrogen energy carrier. Systems Design Institute, NASA Grant NGT 44-005-114 Savage RL, Blank L, Cady T, Cox K, Murray R, Dee Williams R (1973) A hydrogen energy carrier. Systems Design Institute, NASA Grant NGT 44-005-114
Zurück zum Zitat Sivasubramanian P, Ramasamy RP, Freire FJ, Holland CE, Weidner JW (2007) Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer. Int J Hydrogen Energ 32:463–468CrossRef Sivasubramanian P, Ramasamy RP, Freire FJ, Holland CE, Weidner JW (2007) Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer. Int J Hydrogen Energ 32:463–468CrossRef
Zurück zum Zitat Von Federsdorff CG (1974) Non-fossil fuel process for production of hydrogen and oxygen. US Patent 3,802,993 Von Federsdorff CG (1974) Non-fossil fuel process for production of hydrogen and oxygen. US Patent 3,802,993
Zurück zum Zitat Williams LO (1980) Hydrogen power. An Introduction to hydrogen energy and its applications. Pergamon, New York Williams LO (1980) Hydrogen power. An Introduction to hydrogen energy and its applications. Pergamon, New York
Zurück zum Zitat Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati V (2010) Comparison of sulfur-iodine and copper-chlorine thermochemical hydrogen production cycles. Int J Hydrogen Energy 35:4820–4830CrossRef Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati V (2010) Comparison of sulfur-iodine and copper-chlorine thermochemical hydrogen production cycles. Int J Hydrogen Energy 35:4820–4830CrossRef
Zurück zum Zitat Yan XL, Hino R (2011) Nuclear hydrogen production. CRC Press, Boca Raton Yan XL, Hino R (2011) Nuclear hydrogen production. CRC Press, Boca Raton
Zurück zum Zitat Zamfirescu C, Naterer GF, Dincer I (2010) Novel CuCl vapor compression heat pump integrated with a thermochemical water splitting cycle. Thermochimica Acta 512:40–48CrossRef Zamfirescu C, Naterer GF, Dincer I (2010) Novel CuCl vapor compression heat pump integrated with a thermochemical water splitting cycle. Thermochimica Acta 512:40–48CrossRef
Metadaten
Titel
Thermochemical Water-Splitting Cycles
verfasst von
Greg F. Naterer
Ibrahim Dincer
Calin Zamfirescu
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4938-5_5