Skip to main content

2020 | OriginalPaper | Buchkapitel

Thermodynamic and Kinetic Modelling of Molten Oxide Electrolysis Cells

verfasst von : William D. Judge, Gisele Azimi

Erschienen in: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct electrolytic extraction of molten iron from its oxide is an attractive alternative technology for reducing, or eliminating, greenhouse gas emissions associated with iron and steelmaking. While significant progress has been made to develop the process on the laboratory and industrial scales, there is no information on the anticipated performance of large-scale molten oxide electrolysis cells in the open literature. In this work, we present a detailed thermodynamic and kinetic model to describe large-scale molten oxide electrolysis cells. The model simultaneously considers the effect of different thermodynamic and kinetic parameters to predict energy requirements (kW h/tonne) and throughput (tonnes/day) of electrolysis cells. In instances where existing technical or engineering information is absent for molten oxide electrolysis cells, analogy was drawn to Hall-Héroult cells for aluminum electrolysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat World Steel Association (2019) Steel statistical yearbook. Belgium, Brussels World Steel Association (2019) Steel statistical yearbook. Belgium, Brussels
2.
Zurück zum Zitat Carpenter A (2012) CO2 abatement in the iron and steel industry. IEA Clean Coal Centre, pp 67–70 Carpenter A (2012) CO2 abatement in the iron and steel industry. IEA Clean Coal Centre, pp 67–70
3.
Zurück zum Zitat International Energy Agency (2017) Energy technology perspectives 2017, Paris International Energy Agency (2017) Energy technology perspectives 2017, Paris
4.
Zurück zum Zitat Sadoway DR (1995) New opportunities for metal extraction and waste treatment by electrochemical processing in molten salts. J Mater Res 10(3):487–492CrossRef Sadoway DR (1995) New opportunities for metal extraction and waste treatment by electrochemical processing in molten salts. J Mater Res 10(3):487–492CrossRef
5.
Zurück zum Zitat Kim H, Paramore J, Allanore A, Sadoway DR (2011) Electrolysis of molten iron oxide with an iridium anode: the role of electrolyte basicity. J Electrochem Soc 158(10):E101–E105CrossRef Kim H, Paramore J, Allanore A, Sadoway DR (2011) Electrolysis of molten iron oxide with an iridium anode: the role of electrolyte basicity. J Electrochem Soc 158(10):E101–E105CrossRef
6.
Zurück zum Zitat Wang D, Gmitter AJ, Sadoway DR (2011) Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc 158(6):E51–E54CrossRef Wang D, Gmitter AJ, Sadoway DR (2011) Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc 158(6):E51–E54CrossRef
7.
Zurück zum Zitat Allanore A (2017) Electrochemical engineering for commodity metals extraction. Interface 26(2):63–68 Allanore A (2017) Electrochemical engineering for commodity metals extraction. Interface 26(2):63–68
8.
Zurück zum Zitat Judge WD, Allanore A, Sadoway DR, Azimi G (2017) E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochim Acta 247:1088–1094CrossRef Judge WD, Allanore A, Sadoway DR, Azimi G (2017) E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochim Acta 247:1088–1094CrossRef
9.
Zurück zum Zitat Judge WD, Azimi G (2018) Electrochemical behaviour of iron in molten oxides. ECS Trans 85(4):91–102CrossRef Judge WD, Azimi G (2018) Electrochemical behaviour of iron in molten oxides. ECS Trans 85(4):91–102CrossRef
10.
Zurück zum Zitat Barati M, Coley KS (2006) Electrical and electronic conductivity of CaO-SiO2-FeOx slags at various oxygen potentials: part II. Mechanism and a model of electronic conduction. Metall Mater Trans B 37(1):51–60 Barati M, Coley KS (2006) Electrical and electronic conductivity of CaO-SiO2-FeOx slags at various oxygen potentials: part II. Mechanism and a model of electronic conduction. Metall Mater Trans B 37(1):51–60
11.
Zurück zum Zitat Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang Y, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende M (2016) Factsage thermochemical software and databases, 2010–2016. CALPHAD 54:35–53CrossRef Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang Y, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende M (2016) Factsage thermochemical software and databases, 2010–2016. CALPHAD 54:35–53CrossRef
12.
Zurück zum Zitat Allibert M, Gaye H, Geiseler J (1995) Slag atlas. Verlag Stahleisen GmbH, Dusseldorf, Germany Allibert M, Gaye H, Geiseler J (1995) Slag atlas. Verlag Stahleisen GmbH, Dusseldorf, Germany
13.
Zurück zum Zitat Lee SH, Min DJ (2017) Influence of basicity on anodic reaction in CaO-SiO2-Al2O3 melts. J Electrochem Soc 164(8):H5308–H5314CrossRef Lee SH, Min DJ (2017) Influence of basicity on anodic reaction in CaO-SiO2-Al2O3 melts. J Electrochem Soc 164(8):H5308–H5314CrossRef
14.
Zurück zum Zitat Park J, Rhee PC (2001) Ionic properties of oxygen in slag. J Non Cryst Solids 282(1):7–14CrossRef Park J, Rhee PC (2001) Ionic properties of oxygen in slag. J Non Cryst Solids 282(1):7–14CrossRef
15.
Zurück zum Zitat Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A (2001) Aluminum electrolysis: fundamentals of the Hall-Héroult process. Al-Verlag, Dusseldorf Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A (2001) Aluminum electrolysis: fundamentals of the Hall-Héroult process. Al-Verlag, Dusseldorf
16.
Zurück zum Zitat Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in NaF-AlF3-Al2O3 melts—II. Electrochim Acta 23(3):233–241CrossRef Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in NaF-AlF3-Al2O3 melts—II. Electrochim Acta 23(3):233–241CrossRef
17.
Zurück zum Zitat Grjotheim K, Nai Xiang F, Kvandet H (1986) Current efficiency measurements in laboratory aluminium cells—IX. Cathodic overvoltage on aluminium-copper alloys. Can Metall Q 25(4):293–296 Grjotheim K, Nai Xiang F, Kvandet H (1986) Current efficiency measurements in laboratory aluminium cells—IX. Cathodic overvoltage on aluminium-copper alloys. Can Metall Q 25(4):293–296
18.
Zurück zum Zitat Keller R, Rolseth S, Thonstad J (1997) Mass transport considerations for the development of oxygen-evolving anodes in aluminum electrolysis. Electrochim Acta 42(12):1809–1817CrossRef Keller R, Rolseth S, Thonstad J (1997) Mass transport considerations for the development of oxygen-evolving anodes in aluminum electrolysis. Electrochim Acta 42(12):1809–1817CrossRef
19.
Zurück zum Zitat Jessen SW (2008) Mathematical modeling of a Hall Héroult aluminium reduction cell. Technical University of Denmark, Lyngby, Denmark Jessen SW (2008) Mathematical modeling of a Hall Héroult aluminium reduction cell. Technical University of Denmark, Lyngby, Denmark
20.
Zurück zum Zitat Allanore A, Yin L, Sadoway DR (2013) A new anode material for oxygen evolution in molten oxide electrolysis. Nature 497(7449):353–356CrossRef Allanore A, Yin L, Sadoway DR (2013) A new anode material for oxygen evolution in molten oxide electrolysis. Nature 497(7449):353–356CrossRef
21.
Zurück zum Zitat Caldwell AH, Lai E, Gmitter AJ, Allanore A (2016) Influence of mass transfer and electrolyte composition on anodic oxygen evolution in molten oxides. Electrochim Acta 219:178–186CrossRef Caldwell AH, Lai E, Gmitter AJ, Allanore A (2016) Influence of mass transfer and electrolyte composition on anodic oxygen evolution in molten oxides. Electrochim Acta 219:178–186CrossRef
22.
Zurück zum Zitat Haupin WE (2016) Principles of aluminum electrolysis. In: Essential readings in light metals. Springer, Berlin, pp 3–11 Haupin WE (2016) Principles of aluminum electrolysis. In: Essential readings in light metals. Springer, Berlin, pp 3–11
23.
Zurück zum Zitat Ghosh A, Chatterjee A (2015) Ironmaking and steelmaking: theory and practice. PHI Learning Private Limited, Delhi, India Ghosh A, Chatterjee A (2015) Ironmaking and steelmaking: theory and practice. PHI Learning Private Limited, Delhi, India
Metadaten
Titel
Thermodynamic and Kinetic Modelling of Molten Oxide Electrolysis Cells
verfasst von
William D. Judge
Gisele Azimi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36296-6_177

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.