Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2018

12.09.2018

Thermodynamic and Structural Study of the Copper-Aluminum System by the Electrochemical Method Using a Copper-Selective Beta″ Alumina Membrane

verfasst von: Caspar Stinn, Antoine Allanore

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The liquid phase thermodynamics of mixing of the copper-aluminum binary system are investigated as a function of temperature and composition using the electrochemical potential difference method. A copper-selective beta″ alumina is used as a solid electrolyte, synthesized through ion exchange, sintering from base oxide powders, and the floating zone method of crystal growth. Measured thermodynamics of mixing data were used to inform short-range ordering in copper-aluminum melts through Darken’s factor for excess stability and Bhatia–Thornton structure factors, revealing a strong departure from ideality and pronounced ordering. Mixing properties were used to predict viscosity and self-diffusion coefficients. Features observed in calculated electronic entropy of mixing for copper-aluminum were compared with trends in viscosity, demonstrating the utility of electronic properties of mixing in the description of structure–properties in this liquid binary system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M.T. Di Giovanni, E. Cerri, T. Saito, S. Akhtar, P. Åsholt, Y. Li, and M. Di Sabatino: Metall. Ital., 2016, vol. 108, pp. 43–7. M.T. Di Giovanni, E. Cerri, T. Saito, S. Akhtar, P. Åsholt, Y. Li, and M. Di Sabatino: Metall. Ital., 2016, vol. 108, pp. 43–7.
2.
Zurück zum Zitat R.A. Gonçalves and M.B. da Silva: Procedia Manuf., 2015, vol. 1, pp. 683–95.CrossRef R.A. Gonçalves and M.B. da Silva: Procedia Manuf., 2015, vol. 1, pp. 683–95.CrossRef
4.
5.
Zurück zum Zitat M. Založnik, B. Sarler, and D. Gobin: Mater. Tehnol., 2004, vol. 38, pp. 249–55. M. Založnik, B. Sarler, and D. Gobin: Mater. Tehnol., 2004, vol. 38, pp. 249–55.
6.
Zurück zum Zitat G. Gaustad, E. Olivetti, and R. Kirchain: Resour. Conserv. Recycl., 2012, vol. 58, pp. 79–87.CrossRef G. Gaustad, E. Olivetti, and R. Kirchain: Resour. Conserv. Recycl., 2012, vol. 58, pp. 79–87.CrossRef
7.
Zurück zum Zitat S.R. Wagstaff: J. Sib. Fed. Univ. Eng. Technol., 2018, vol. 11, pp. 409–18.CrossRef S.R. Wagstaff: J. Sib. Fed. Univ. Eng. Technol., 2018, vol. 11, pp. 409–18.CrossRef
8.
Zurück zum Zitat N. Saunders: in COST 507 Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, eds., vol. 2, 1998, pp. 28–33. N. Saunders: in COST 507 Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, eds., vol. 2, 1998, pp. 28–33.
9.
Zurück zum Zitat A.I. Zaitsev, R.Y. Shimko, N.A. Arutyunyan, and S.F. Dunaev: Dokl. Phys. Chem., 2007, vol. 414, pp. 115–9.CrossRef A.I. Zaitsev, R.Y. Shimko, N.A. Arutyunyan, and S.F. Dunaev: Dokl. Phys. Chem., 2007, vol. 414, pp. 115–9.CrossRef
10.
Zurück zum Zitat H. Oyamada, T. Nagasaka, and M. Hino: Mater. Trans. JIM, 1998, vol. 39, pp. 1225–9.CrossRef H. Oyamada, T. Nagasaka, and M. Hino: Mater. Trans. JIM, 1998, vol. 39, pp. 1225–9.CrossRef
11.
Zurück zum Zitat D.S. Kanibolotsky, O.A. Bieloborodova, N. V Kotova, and V. V Lisnyak: J. Therm. Anal. Calorim., 2002, vol. 70, pp. 975–83.CrossRef D.S. Kanibolotsky, O.A. Bieloborodova, N. V Kotova, and V. V Lisnyak: J. Therm. Anal. Calorim., 2002, vol. 70, pp. 975–83.CrossRef
12.
Zurück zum Zitat U.K. Stolz, I. Arpshofen, F. Sommer, and B. Predel: J. Phase Equilibria, 1993, vol. 14, pp. 473–8.CrossRef U.K. Stolz, I. Arpshofen, F. Sommer, and B. Predel: J. Phase Equilibria, 1993, vol. 14, pp. 473–8.CrossRef
13.
Zurück zum Zitat M. Schick, J. Brillo, I. Egry, and B. Hallstedt: J. Mater. Sci., 2012, vol. 47, pp. 8145–52.CrossRef M. Schick, J. Brillo, I. Egry, and B. Hallstedt: J. Mater. Sci., 2012, vol. 47, pp. 8145–52.CrossRef
14.
Zurück zum Zitat V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex: J. Alloys Compd., 2004, vol. 385, pp. 133–43. V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex: J. Alloys Compd., 2004, vol. 385, pp. 133–43.
15.
Zurück zum Zitat A.S. Roik, V.P. Kazimirov, and V.E. Sokolskii: Russ. Metall., 2014, vol. 2014, pp. 23–32.CrossRef A.S. Roik, V.P. Kazimirov, and V.E. Sokolskii: Russ. Metall., 2014, vol. 2014, pp. 23–32.CrossRef
16.
Zurück zum Zitat J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, and D. Zanghi: J. Non. Cryst. Solids, 2006, vol. 352, pp. 4008–12.CrossRef J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, and D. Zanghi: J. Non. Cryst. Solids, 2006, vol. 352, pp. 4008–12.CrossRef
17.
Zurück zum Zitat J. Dziedzic, S. Winczewski, and J. Rybicki: Comput. Mater. Sci., 2016, vol. 114, pp. 219–32.CrossRef J. Dziedzic, S. Winczewski, and J. Rybicki: Comput. Mater. Sci., 2016, vol. 114, pp. 219–32.CrossRef
18.
19.
Zurück zum Zitat P. Dinsdale and P.N. Quested: J. Mater. Sci., 2004, vol. 9, pp. 7221–8.CrossRef P. Dinsdale and P.N. Quested: J. Mater. Sci., 2004, vol. 9, pp. 7221–8.CrossRef
20.
Zurück zum Zitat J. Schmitz, J. Brillo, I. Egry, and R. Schmid-Fetzer: Int. J. Mat. Res., 2009, vol. 100, pp. 1529–35.CrossRef J. Schmitz, J. Brillo, I. Egry, and R. Schmid-Fetzer: Int. J. Mat. Res., 2009, vol. 100, pp. 1529–35.CrossRef
21.
Zurück zum Zitat A.R. Kurochkin, P.S. Popel, D.A. Yagodin, A. V Borisenko, and A. V Okhapkin: High Temp., 2013, vol. 51, pp. 224–32.CrossRef A.R. Kurochkin, P.S. Popel, D.A. Yagodin, A. V Borisenko, and A. V Okhapkin: High Temp., 2013, vol. 51, pp. 224–32.CrossRef
22.
Zurück zum Zitat N.Y. Konstantinova, A.R. Kurochkin, A. V. Borisenko, V. V. Filippov, and P.S. Popel: Russ. Metall., 2016, vol. 2016, pp. 144–9.CrossRef N.Y. Konstantinova, A.R. Kurochkin, A. V. Borisenko, V. V. Filippov, and P.S. Popel: Russ. Metall., 2016, vol. 2016, pp. 144–9.CrossRef
23.
24.
Zurück zum Zitat R.M. Khusnutdinoff, A.V. Mokshin, S.G. Menshikova, A.L. Beltyukov, and V.I. Ladyanov: J. Exp. Theor. Phys., 2016, vol. 122, pp. 859–68.CrossRef R.M. Khusnutdinoff, A.V. Mokshin, S.G. Menshikova, A.L. Beltyukov, and V.I. Ladyanov: J. Exp. Theor. Phys., 2016, vol. 122, pp. 859–68.CrossRef
25.
Zurück zum Zitat M. V. Vaghela, A. Y. Vahora, N.K. Bhatt, B.Y. Thakore, and A.R. Jani: AIP Conf. Proc., 2013, vol. 1536, pp. 637–8.CrossRef M. V. Vaghela, A. Y. Vahora, N.K. Bhatt, B.Y. Thakore, and A.R. Jani: AIP Conf. Proc., 2013, vol. 1536, pp. 637–8.CrossRef
26.
Zurück zum Zitat Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 3040–5.CrossRef Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 3040–5.CrossRef
27.
Zurück zum Zitat Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin: Solid State Ionics, 2008, vol. 179, pp. 1697–1701.CrossRef Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin: Solid State Ionics, 2008, vol. 179, pp. 1697–1701.CrossRef
28.
Zurück zum Zitat H. Kuwamoto and H. Sato: Solid State Ionics, 1981, vol. 5, pp. 187–8.CrossRef H. Kuwamoto and H. Sato: Solid State Ionics, 1981, vol. 5, pp. 187–8.CrossRef
30.
Zurück zum Zitat T.K. Hunt, N. Weber, and T. Cole: Solid State Ionics, 1981, vol. 5, pp. 263–5.CrossRef T.K. Hunt, N. Weber, and T. Cole: Solid State Ionics, 1981, vol. 5, pp. 263–5.CrossRef
33.
Zurück zum Zitat J. Liu and W. Weppner: Solid State Commun., 1990, vol. 76, pp. 311–3.CrossRef J. Liu and W. Weppner: Solid State Commun., 1990, vol. 76, pp. 311–3.CrossRef
34.
Zurück zum Zitat J. Vangrunderbeek, F. Vandecruys, and R. V. Kumar: Solid State Ionics, 2000, vol. 136–137, pp. 567–71.CrossRef J. Vangrunderbeek, F. Vandecruys, and R. V. Kumar: Solid State Ionics, 2000, vol. 136–137, pp. 567–71.CrossRef
35.
Zurück zum Zitat G. Dorner, H. Durakpasa, P. Linhardt, and M.W. Breitter: Electrochim. Acta, 1991, vol. 36, pp. 563–8.CrossRef G. Dorner, H. Durakpasa, P. Linhardt, and M.W. Breitter: Electrochim. Acta, 1991, vol. 36, pp. 563–8.CrossRef
36.
Zurück zum Zitat R. Kvachkov, A. Yanakiev, C.N. Poulieff, P.D. Yankulov, S. Rashkov, and E. Budevski: Solid State Ionics, 1982, vol. 7, pp. 151–5.CrossRef R. Kvachkov, A. Yanakiev, C.N. Poulieff, P.D. Yankulov, S. Rashkov, and E. Budevski: Solid State Ionics, 1982, vol. 7, pp. 151–5.CrossRef
37.
Zurück zum Zitat R.J. Baughman and R.A. Lefever: Mater. Res. Bull., 1975, vol. 10, pp. 607–12.CrossRef R.J. Baughman and R.A. Lefever: Mater. Res. Bull., 1975, vol. 10, pp. 607–12.CrossRef
38.
Zurück zum Zitat M.S. Whittingham and R.A. Huggins: J. Electrochem. Soc., 1971, vol. 118, pp. 1–6.CrossRef M.S. Whittingham and R.A. Huggins: J. Electrochem. Soc., 1971, vol. 118, pp. 1–6.CrossRef
39.
Zurück zum Zitat J. Briant and G. Farrington: J. Electrochem. Soc., 1981, vol. 128, pp. 1830–4.CrossRef J. Briant and G. Farrington: J. Electrochem. Soc., 1981, vol. 128, pp. 1830–4.CrossRef
40.
Zurück zum Zitat G.M. Crosbie and G.J. Tennenhouse: J. Am. Ceram. Soc., 1982, vol. 65, pp. 187–91.CrossRef G.M. Crosbie and G.J. Tennenhouse: J. Am. Ceram. Soc., 1982, vol. 65, pp. 187–91.CrossRef
41.
Zurück zum Zitat Y. Yu Yao and J.T. Kummer: J. Inorg. Nucl. Chem., 1967, vol. 29, pp. 2453–75.CrossRef Y. Yu Yao and J.T. Kummer: J. Inorg. Nucl. Chem., 1967, vol. 29, pp. 2453–75.CrossRef
42.
Zurück zum Zitat J.A. Little and D.J. Fray: Electrochim. Acta, 1980, vol. 25, pp. 957–64.CrossRef J.A. Little and D.J. Fray: Electrochim. Acta, 1980, vol. 25, pp. 957–64.CrossRef
43.
Zurück zum Zitat T. Oishi, S. Tagawa, and S. Tanegashima: J. Phys. Chem. Solids, 2005, vol. 66, pp. 251–5.CrossRef T. Oishi, S. Tagawa, and S. Tanegashima: J. Phys. Chem. Solids, 2005, vol. 66, pp. 251–5.CrossRef
44.
Zurück zum Zitat J.A. Little and D.J. Fray: Trans. Inst. Min. Metall., 1979, vol. 88, pp. C229–33. J.A. Little and D.J. Fray: Trans. Inst. Min. Metall., 1979, vol. 88, pp. C229–33.
45.
Zurück zum Zitat J.D. Barrie, B. Dunn, O.M. Stafsudd, and P. Nelson: J. Lumin. 39: 29-33 (1987).CrossRef J.D. Barrie, B. Dunn, O.M. Stafsudd, and P. Nelson: J. Lumin. 39: 29-33 (1987).CrossRef
46.
Zurück zum Zitat B. Cleaver and A. Davies: Electrochim. Acta, 1973, vol. 18, pp. 733–9.CrossRef B. Cleaver and A. Davies: Electrochim. Acta, 1973, vol. 18, pp. 733–9.CrossRef
47.
Zurück zum Zitat S.K. Kim: J. Korean Ceram. Soc., 1995, vol. 32, pp. 1040–6. S.K. Kim: J. Korean Ceram. Soc., 1995, vol. 32, pp. 1040–6.
48.
Zurück zum Zitat H. Kim, D.A. Boysen, D.J. Bradwell, B. Chung, K. Jiang, A.A. Tomaszowska, K. Wang, W. Wei, and D.R. Sadoway: Electrochim. Acta, 2012, vol. 60, pp. 154–62.CrossRef H. Kim, D.A. Boysen, D.J. Bradwell, B. Chung, K. Jiang, A.A. Tomaszowska, K. Wang, W. Wei, and D.R. Sadoway: Electrochim. Acta, 2012, vol. 60, pp. 154–62.CrossRef
49.
Zurück zum Zitat M.D. Koretsky: Engineering and Chemical Thermodynamics, 2nd edn., Wiley, Hoboken, 2013. M.D. Koretsky: Engineering and Chemical Thermodynamics, 2nd edn., Wiley, Hoboken, 2013.
50.
Zurück zum Zitat M.-L. Saboungi, W. Geertsma, and D.L. Price: Annu. Rev. Phys. Chem., 1990, vol. 41, pp. 207–44.CrossRef M.-L. Saboungi, W. Geertsma, and D.L. Price: Annu. Rev. Phys. Chem., 1990, vol. 41, pp. 207–44.CrossRef
51.
Zurück zum Zitat M. Saboungi, J. Marr, and M. Blander: J. Chem. Phys., 1978, vol. 68, pp. 1375–84.CrossRef M. Saboungi, J. Marr, and M. Blander: J. Chem. Phys., 1978, vol. 68, pp. 1375–84.CrossRef
52.
Zurück zum Zitat C.C. Rinzler and A. Allanore: Philos. Mag., 2016, vol. 96, pp. 3041–53.CrossRef C.C. Rinzler and A. Allanore: Philos. Mag., 2016, vol. 96, pp. 3041–53.CrossRef
54.
Zurück zum Zitat T. Tanaka, K. Hack, and S. Hara: MRS Bull., 1999, vol. 24, pp. 45–9.CrossRef T. Tanaka, K. Hack, and S. Hara: MRS Bull., 1999, vol. 24, pp. 45–9.CrossRef
55.
Zurück zum Zitat S. Seetharaman and D. Sichen: Metall. Mater. Trans. B, 1994, vol. 25, pp. 589–95.CrossRef S. Seetharaman and D. Sichen: Metall. Mater. Trans. B, 1994, vol. 25, pp. 589–95.CrossRef
56.
Zurück zum Zitat J. Brillo: Thermophysical Properties of Multicomponent Liquid Alloys, Walter de Gruyter GmbH & Co KG, Berlin, 2016.CrossRef J. Brillo: Thermophysical Properties of Multicomponent Liquid Alloys, Walter de Gruyter GmbH & Co KG, Berlin, 2016.CrossRef
57.
Zurück zum Zitat R.N. Singh and F. Sommer: Phys. Chem. Liq., 1998, vol. 36, pp. 17–28.CrossRef R.N. Singh and F. Sommer: Phys. Chem. Liq., 1998, vol. 36, pp. 17–28.CrossRef
58.
Zurück zum Zitat H.A. Dabkowska, A.B. Dabkowski, R. Hermann, J. Priede, and G. Gerbeth: in Handbook of Crystal Growth: Bulk Crystal Growth: Second Edition, 2014. H.A. Dabkowska, A.B. Dabkowski, R. Hermann, J. Priede, and G. Gerbeth: in Handbook of Crystal Growth: Bulk Crystal Growth: Second Edition, 2014.
59.
60.
Zurück zum Zitat G.H. Teichert, N.S.H. Gunda, S. Rudraraju, A.R. Natarajan, B. Puchala, K. Garikipati, and A. Van der Ven: Comput. Mater. Sci., 2017, vol. 128, pp. 127–39.CrossRef G.H. Teichert, N.S.H. Gunda, S. Rudraraju, A.R. Natarajan, B. Puchala, K. Garikipati, and A. Van der Ven: Comput. Mater. Sci., 2017, vol. 128, pp. 127–39.CrossRef
61.
Zurück zum Zitat C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Inc, Cambridge, MA, USA, 1952. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Inc, Cambridge, MA, USA, 1952.
62.
Zurück zum Zitat M. Trybuła, N. Jakse, W. Gąsior, and A. Pasturel: Arch. Metall. Mater., 2015, vol. 60, pp. 649–55.CrossRef M. Trybuła, N. Jakse, W. Gąsior, and A. Pasturel: Arch. Metall. Mater., 2015, vol. 60, pp. 649–55.CrossRef
63.
Zurück zum Zitat J.-L. Bretonnet, J. Auchet, and J.G. Gasser: J. Non. Cryst. Solids, 1990, vol. 117–118, pp. 395–8.CrossRef J.-L. Bretonnet, J. Auchet, and J.G. Gasser: J. Non. Cryst. Solids, 1990, vol. 117–118, pp. 395–8.CrossRef
64.
Zurück zum Zitat H.U. Kunzi and H. Guntherodtf: in The Hall Effect and its Applications, C.L. Chien and C.R. Westgate, eds., Springer, New York, NY, 1980, pp. 215–52. H.U. Kunzi and H. Guntherodtf: in The Hall Effect and its Applications, C.L. Chien and C.R. Westgate, eds., Springer, New York, NY, 1980, pp. 215–52.
65.
Zurück zum Zitat S. Takeuchi and K. Murakami: Sci. Reports Res. Institutes, Tohoku Univ. Ser. A, Physics, Chem. Metall., 1974, vol. 25, pp. 73–86. S. Takeuchi and K. Murakami: Sci. Reports Res. Institutes, Tohoku Univ. Ser. A, Physics, Chem. Metall., 1974, vol. 25, pp. 73–86.
66.
Zurück zum Zitat S. Glasstone, K.J. Laider, and H. Eyring: The Theory of Rate Processes; The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena, McGraw-Hill, 1941. S. Glasstone, K.J. Laider, and H. Eyring: The Theory of Rate Processes; The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena, McGraw-Hill, 1941.
67.
Zurück zum Zitat R.E. Aune, M. Hayashi, and S. Sridhar: Ironmak. Steelmak., 2005, vol. 32, pp. 141–50.CrossRef R.E. Aune, M. Hayashi, and S. Sridhar: Ironmak. Steelmak., 2005, vol. 32, pp. 141–50.CrossRef
68.
Zurück zum Zitat O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry, 5th edn., Pergamon Press, Oxford, 1979. O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry, 5th edn., Pergamon Press, Oxford, 1979.
69.
Zurück zum Zitat T. Ejima and T. Yamamura: J. Phys. Colloq., 1980, vol. 41, pp. 345-348.CrossRef T. Ejima and T. Yamamura: J. Phys. Colloq., 1980, vol. 41, pp. 345-348.CrossRef
70.
Zurück zum Zitat H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The Calphad Method, Cambridge University Press, New York, NY, 2007.CrossRef H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The Calphad Method, Cambridge University Press, New York, NY, 2007.CrossRef
Metadaten
Titel
Thermodynamic and Structural Study of the Copper-Aluminum System by the Electrochemical Method Using a Copper-Selective Beta″ Alumina Membrane
verfasst von
Caspar Stinn
Antoine Allanore
Publikationsdatum
12.09.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2018
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-018-1400-y

Weitere Artikel der Ausgabe 6/2018

Metallurgical and Materials Transactions B 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.