Skip to main content

2017 | OriginalPaper | Buchkapitel

18. Thermodynamic Equilibria in Systems with Nanoparticles

verfasst von : Jindřich Leitner, David Sedmidubský

Erschienen in: Thermal Physics and Thermal Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermodynamic description of systems with nanoparticles in the frame of the Gibbs theory of interfaces is presented. Although much attention has been paid to thermodynamic modelling of nanosystems, the calculation of phase diagrams of nanoalloys as well as the assessment of effects of surface-related phenomena on the solubility of nanoparticles and gas–solid reactions, some discrepancy still remains dealing with the expression of the surface contribution to molar Gibbs energy and chemical potential of components. It is shown that due to the non-extensive nature of the surface area, these contributions are different for molar and partial molar quantities. The consistent expressions for molar Gibbs energy and chemical potentials of components of spherical nanoparticles are put forward along with the correct forms of equilibrium conditions. Moreover, the applicability of the shape factor α = A non-spherical/A spherical (V non-spherical = V spherical) which is used in the expressions involving surface-to-volume ratio of non-spherical particles is addressed. A new parameter, the differential shape factor α′ = dA non-spherical/dA spherical (V non-spherical = V spherical, dV non-spherical = dV spherical), is proposed which should be used in equilibrium conditions based on the equality of chemical potentials. The enhanced solubility of paracetamol nanoparticles in water and thermal decomposition of GaN nanowires are demonstrated as examples of size effect in nanosystems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goswami GK, Nanda KK (2012) Thermodynamic models for the size-dependent melting of nanoparticles: different hypotheses. Current Nanosci 8:305–311CrossRef Goswami GK, Nanda KK (2012) Thermodynamic models for the size-dependent melting of nanoparticles: different hypotheses. Current Nanosci 8:305–311CrossRef
2.
Zurück zum Zitat Xue YQ, Zhao MZ, Lai WP (2013) Size-dependent phase transition temperatures of dispersed systems. Phys B 408:134–139CrossRef Xue YQ, Zhao MZ, Lai WP (2013) Size-dependent phase transition temperatures of dispersed systems. Phys B 408:134–139CrossRef
3.
Zurück zum Zitat Li ZH, Truhlar DG (2014) Nanothermodynamics of metal nanoparticles. Chem Sci 5:2605–2624CrossRef Li ZH, Truhlar DG (2014) Nanothermodynamics of metal nanoparticles. Chem Sci 5:2605–2624CrossRef
4.
Zurück zum Zitat Yang CC, Mai YW (2014) Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Eng R 79:1–40CrossRef Yang CC, Mai YW (2014) Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Eng R 79:1–40CrossRef
5.
Zurück zum Zitat Šesták J (2015) Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. J Ther Anal Calorim 120:129–137CrossRef Šesták J (2015) Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. J Ther Anal Calorim 120:129–137CrossRef
6.
Zurück zum Zitat Eichhammer Y, Heyns M, Moelans N (2011) Calculation of phase equilibria for an alloy nanoparticle in contact with a solid nanowire. CALPHAD 35:173–182CrossRef Eichhammer Y, Heyns M, Moelans N (2011) Calculation of phase equilibria for an alloy nanoparticle in contact with a solid nanowire. CALPHAD 35:173–182CrossRef
7.
Zurück zum Zitat Garzel G, Janczak-Rusch J, Zadbyr L (2012) Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect. CALPHAD 36:52–56CrossRef Garzel G, Janczak-Rusch J, Zadbyr L (2012) Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect. CALPHAD 36:52–56CrossRef
8.
Zurück zum Zitat Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold-copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726 Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold-copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726
9.
Zurück zum Zitat Sim K, Lee J (2014) Phase stability of Ag–Sn alloy nanoparticles. J Alloys Compd 590:140–146CrossRef Sim K, Lee J (2014) Phase stability of Ag–Sn alloy nanoparticles. J Alloys Compd 590:140–146CrossRef
10.
Zurück zum Zitat Sopoušek J, Vřešťál J, Pinkas J, Brož P, Buršík J, Stýskalík A, Škoda D, Zobač O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD 45:33–39CrossRef Sopoušek J, Vřešťál J, Pinkas J, Brož P, Buršík J, Stýskalík A, Škoda D, Zobač O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD 45:33–39CrossRef
11.
Zurück zum Zitat Kroupa A, Káňa T, Buršík J, Zemanová A, Šob M (2015) Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn. Phys Chem Chem Phys 17:28200–28210CrossRef Kroupa A, Káňa T, Buršík J, Zemanová A, Šob M (2015) Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn. Phys Chem Chem Phys 17:28200–28210CrossRef
12.
Zurück zum Zitat Ghasemi M, Zanolli Z, Stankovski M, Johansson J (2015) Size- and shape-dependent phase diagram of In–Sb nano-alloys. Nanoscale 7:17369–17387CrossRef Ghasemi M, Zanolli Z, Stankovski M, Johansson J (2015) Size- and shape-dependent phase diagram of In–Sb nano-alloys. Nanoscale 7:17369–17387CrossRef
13.
Zurück zum Zitat Bajaj S, Haverty MG, Arróyave R, Goddard FRSCWA III, Shankare S (2015) Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7:9868–9877CrossRef Bajaj S, Haverty MG, Arróyave R, Goddard FRSCWA III, Shankare S (2015) Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7:9868–9877CrossRef
14.
Zurück zum Zitat Kaptay G (2012) On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 430:253–257CrossRef Kaptay G (2012) On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 430:253–257CrossRef
15.
Zurück zum Zitat Du J, Zhao R, Xue Y (2012) Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: an theoretical and experimental study. J Chem Thermodyn 55:218–224CrossRef Du J, Zhao R, Xue Y (2012) Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: an theoretical and experimental study. J Chem Thermodyn 55:218–224CrossRef
16.
Zurück zum Zitat Murdande SB, Shah DA, Dave RH (2015) Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J Pharm Sci 104:2094–2102CrossRef Murdande SB, Shah DA, Dave RH (2015) Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J Pharm Sci 104:2094–2102CrossRef
17.
Zurück zum Zitat Navrotsky A (2011) Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 2011:2207–2215CrossRef Navrotsky A (2011) Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 2011:2207–2215CrossRef
18.
Zurück zum Zitat Chung SW, Guliants EA, Bunker CE, Jelliss PA, Buckner SW (2011) Size-dependent nanoparticle reaction enthalpy: oxidation of aluminum nanoparticles. J Phys Chem Solids 72:719–724CrossRef Chung SW, Guliants EA, Bunker CE, Jelliss PA, Buckner SW (2011) Size-dependent nanoparticle reaction enthalpy: oxidation of aluminum nanoparticles. J Phys Chem Solids 72:719–724CrossRef
19.
Zurück zum Zitat Kang SY, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: implication for Na-O2 batteries. Nano Lett 14:1016–1020CrossRef Kang SY, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: implication for Na-O2 batteries. Nano Lett 14:1016–1020CrossRef
20.
Zurück zum Zitat Li M, Altman EI (2014) Cluster-size dependent phase transition of Co oxides on Au(111). Surf Sci 619:L6–L10CrossRef Li M, Altman EI (2014) Cluster-size dependent phase transition of Co oxides on Au(111). Surf Sci 619:L6–L10CrossRef
21.
Zurück zum Zitat Cui Z, Duan H, Li W, Xue Y (2015) Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials. J Nanopart Res 17:321 (11 pp) Cui Z, Duan H, Li W, Xue Y (2015) Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials. J Nanopart Res 17:321 (11 pp)
22.
Zurück zum Zitat Hill TL (2001) A different approach to nanothermodynamics. Nano Lett 1:273–275CrossRef Hill TL (2001) A different approach to nanothermodynamics. Nano Lett 1:273–275CrossRef
23.
Zurück zum Zitat García-Morales V, Cervera J, Pellicer J (2005) Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics. Phys Lett A 336:82–88CrossRef García-Morales V, Cervera J, Pellicer J (2005) Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics. Phys Lett A 336:82–88CrossRef
24.
Zurück zum Zitat Turmine M, Mayaffre A, Letellier P (2004) Nonextensive approach to thermodynamics: analysis and suggestion, and application to chemical reactivity. J Phys Chem B 108:18980–18987CrossRef Turmine M, Mayaffre A, Letellier P (2004) Nonextensive approach to thermodynamics: analysis and suggestion, and application to chemical reactivity. J Phys Chem B 108:18980–18987CrossRef
25.
Zurück zum Zitat Letellier P, Mayaffre A, Turmine M (2007) Solubility of nanoparticles: nonextensive thermodynamics approach. J Phys: Condens Matter 19:436229 (9 pp) Letellier P, Mayaffre A, Turmine M (2007) Solubility of nanoparticles: nonextensive thermodynamics approach. J Phys: Condens Matter 19:436229 (9 pp)
26.
Zurück zum Zitat Letellier P, Mayaffre A, Turmine M (2007) Melting point depression of nanosolids: nonextensive thermodynamics approach. Phys Rev B 76:045428 (8 pp) Letellier P, Mayaffre A, Turmine M (2007) Melting point depression of nanosolids: nonextensive thermodynamics approach. Phys Rev B 76:045428 (8 pp)
27.
Zurück zum Zitat Qi WH, Wang MP (2004) Size and shape dependent melting temperature of metallic nanoparticles. Mater Chem Phys 88:280–284CrossRef Qi WH, Wang MP (2004) Size and shape dependent melting temperature of metallic nanoparticles. Mater Chem Phys 88:280–284CrossRef
28.
Zurück zum Zitat Qi WH, Wang MP, Liu QH (2005) Shape factor of nonspherical nanoparticles. J Mater Sci 40:2737–2739CrossRef Qi WH, Wang MP, Liu QH (2005) Shape factor of nonspherical nanoparticles. J Mater Sci 40:2737–2739CrossRef
29.
Zurück zum Zitat Tanaka T, Iida T (1994) Application of a thermodynamic database to the calculation of surface tension for iron-base liquid alloys. Steel Res 65:21–28CrossRef Tanaka T, Iida T (1994) Application of a thermodynamic database to the calculation of surface tension for iron-base liquid alloys. Steel Res 65:21–28CrossRef
30.
Zurück zum Zitat Tanaka T, Hack K, Iida T, Hara S (1996) Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Z Metallknd 87:380–389 Tanaka T, Hack K, Iida T, Hara S (1996) Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Z Metallknd 87:380–389
31.
Zurück zum Zitat Picha R, Vřešťál J, Kroupa A (2004) Prediction of alloy surface tension using a thermodynamic database. CALPHAD 28:141–146CrossRef Picha R, Vřešťál J, Kroupa A (2004) Prediction of alloy surface tension using a thermodynamic database. CALPHAD 28:141–146CrossRef
32.
Zurück zum Zitat Tanaka T, Kitamura T, Back IA (2006) Evaluation of surface tension of molten ionic mixtures. ISIJ Int 46:400–406CrossRef Tanaka T, Kitamura T, Back IA (2006) Evaluation of surface tension of molten ionic mixtures. ISIJ Int 46:400–406CrossRef
33.
Zurück zum Zitat Nakamoto M, Kiyose A, Tanaka T, Holappa L, Hämäläinen M (2007) Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO. ISIJ Int 47:38–43CrossRef Nakamoto M, Kiyose A, Tanaka T, Holappa L, Hämäläinen M (2007) Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO. ISIJ Int 47:38–43CrossRef
34.
Zurück zum Zitat Hanao M, Tanaka T, Kawamoto M, Takatani K (2007) Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int 47:935–939CrossRef Hanao M, Tanaka T, Kawamoto M, Takatani K (2007) Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int 47:935–939CrossRef
35.
Zurück zum Zitat Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys—recent developments. Adv Colloid Interface Sci 159:198–212CrossRef Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys—recent developments. Adv Colloid Interface Sci 159:198–212CrossRef
36.
Zurück zum Zitat Cahn JW (1980) Surface stress and the chemical equilibrium of small crystals—I. The case of the isotropic surface. Acta Metall 28:1333–1338CrossRef Cahn JW (1980) Surface stress and the chemical equilibrium of small crystals—I. The case of the isotropic surface. Acta Metall 28:1333–1338CrossRef
37.
Zurück zum Zitat Jesser WA, Shneck RZ, Gile WW (2004) Solid-liquid equilibria in nanoparticles of Pb-Bi alloys. Phys Rev B 69:144121 (13 pp) Jesser WA, Shneck RZ, Gile WW (2004) Solid-liquid equilibria in nanoparticles of Pb-Bi alloys. Phys Rev B 69:144121 (13 pp)
38.
Zurück zum Zitat Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237:180–184CrossRef Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237:180–184CrossRef
39.
Zurück zum Zitat Cammarata RC (2008) Generalized surface thermodynamics with application to nucleation. Phil Mag 88:927–948CrossRef Cammarata RC (2008) Generalized surface thermodynamics with application to nucleation. Phil Mag 88:927–948CrossRef
40.
Zurück zum Zitat Cammarata RC (2009) Generalized thermodynamics of surfaces with applications to small solid systems. In: Egrenreich H, Spaepen F (eds) Solid state physics, vol 61. Elsevier, Amsterdam, p 1 Cammarata RC (2009) Generalized thermodynamics of surfaces with applications to small solid systems. In: Egrenreich H, Spaepen F (eds) Solid state physics, vol 61. Elsevier, Amsterdam, p 1
41.
Zurück zum Zitat Espeau P, Céolin R, Tamarit JL, Perrin MA, Gauchi JP, Leveiller F (2005) Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams. J Pharm Sci 94:524–539CrossRef Espeau P, Céolin R, Tamarit JL, Perrin MA, Gauchi JP, Leveiller F (2005) Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams. J Pharm Sci 94:524–539CrossRef
42.
Zurück zum Zitat Hendriksen BA, Grant DJW (1995) The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen). J Cryst Growth 156:252–260CrossRef Hendriksen BA, Grant DJW (1995) The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen). J Cryst Growth 156:252–260CrossRef
43.
Zurück zum Zitat Prasad KVR, Ristic RI, Sheen DB, Sherwood JN (2001) Crystallization of paracetamol from solution in the presence and absence of impurity. Int J Pharm 215:29–44CrossRef Prasad KVR, Ristic RI, Sheen DB, Sherwood JN (2001) Crystallization of paracetamol from solution in the presence and absence of impurity. Int J Pharm 215:29–44CrossRef
44.
Zurück zum Zitat Omar W, Mohnicke M, Ulrich J (2006) Determination of the solid liquid interfacial energy and thereby the critical nucleus size of paracetamol in different solvents. Cryst Res Technol 41:337–343CrossRef Omar W, Mohnicke M, Ulrich J (2006) Determination of the solid liquid interfacial energy and thereby the critical nucleus size of paracetamol in different solvents. Cryst Res Technol 41:337–343CrossRef
45.
Zurück zum Zitat Lerk CF, Schoonen AJM, Fell JT (1976) Contact angles and wetting of pharmaceutical powders. J Pharm Sci 65:843–847CrossRef Lerk CF, Schoonen AJM, Fell JT (1976) Contact angles and wetting of pharmaceutical powders. J Pharm Sci 65:843–847CrossRef
46.
Zurück zum Zitat Duncan-Hewitt W, Nisman R (1993) Investigation of the surface free energy of pharmaceutical materials from contact angle, sedimentation, and adhesion measurements. J Adhesion Sci Technol 7:263–283CrossRef Duncan-Hewitt W, Nisman R (1993) Investigation of the surface free energy of pharmaceutical materials from contact angle, sedimentation, and adhesion measurements. J Adhesion Sci Technol 7:263–283CrossRef
47.
Zurück zum Zitat Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR (2006) Anisotropic surface energetics and wettability of macroscopic form I paracetamol crystals. Langmuir 22:2760–2769CrossRef Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR (2006) Anisotropic surface energetics and wettability of macroscopic form I paracetamol crystals. Langmuir 22:2760–2769CrossRef
48.
Zurück zum Zitat Alander EM, Rasmusson AC (2007) Agglomeration and adhesion free energy of paracetamol crystals in organic solvents. AIChE J 53:2590–2605CrossRef Alander EM, Rasmusson AC (2007) Agglomeration and adhesion free energy of paracetamol crystals in organic solvents. AIChE J 53:2590–2605CrossRef
49.
Zurück zum Zitat Sedmidubský D, Leitner J (2006) Calculation of the thermodynamic properties of AIII nitrides. J Cryst Growth 286:66–70CrossRef Sedmidubský D, Leitner J (2006) Calculation of the thermodynamic properties of AIII nitrides. J Cryst Growth 286:66–70CrossRef
50.
Zurück zum Zitat Sedmidubský D, Leitner J, Svoboda P, Sofer Z, Macháček J (2009) Heat capacity and phonon spectra of AIIIN. Experimental and calculation. J Therm Anal Calorim 95:403–407CrossRef Sedmidubský D, Leitner J, Svoboda P, Sofer Z, Macháček J (2009) Heat capacity and phonon spectra of AIIIN. Experimental and calculation. J Therm Anal Calorim 95:403–407CrossRef
51.
Zurück zum Zitat Moon WH, Kim HJ, Choi CH (2007) Molecular dynamics simulation of melting behaviour of GaN nanowires. Scripta Mater 56:345–348CrossRef Moon WH, Kim HJ, Choi CH (2007) Molecular dynamics simulation of melting behaviour of GaN nanowires. Scripta Mater 56:345–348CrossRef
52.
Zurück zum Zitat Wang Z, Zu X, Gao F, Weber WJ (2007) Size dependence of melting of GaN nanowires with triangular cross sections. J Appl Phys 101:043511 (4 pp) Wang Z, Zu X, Gao F, Weber WJ (2007) Size dependence of melting of GaN nanowires with triangular cross sections. J Appl Phys 101:043511 (4 pp)
53.
Zurück zum Zitat Guisbiers G, Liu D, Jiang Q, Buchaillot L (2010) Theoretical predictions of wurtzite III-nitride nano-materials properties. Phys Chem Chem Phys 12:7203–7210CrossRef Guisbiers G, Liu D, Jiang Q, Buchaillot L (2010) Theoretical predictions of wurtzite III-nitride nano-materials properties. Phys Chem Chem Phys 12:7203–7210CrossRef
54.
Zurück zum Zitat Antoniammal P, Arivuoli D (2012) Size and shape dependence of melting temperature of gallium nitride nanoparticles. J Nanomater 2012:415797 (11 pp) Antoniammal P, Arivuoli D (2012) Size and shape dependence of melting temperature of gallium nitride nanoparticles. J Nanomater 2012:415797 (11 pp)
55.
Zurück zum Zitat Reeber RR, Wang K (2000) Lattice parameters and thermal expansion of GaN. J Mater Res 15:40–44CrossRef Reeber RR, Wang K (2000) Lattice parameters and thermal expansion of GaN. J Mater Res 15:40–44CrossRef
56.
Zurück zum Zitat Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 41:033101 (16 pp) Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 41:033101 (16 pp)
57.
Zurück zum Zitat Gomes MC, Leite DMG, Sambrano JR, Dias da Silva JH, de Souza AR, Beltrán A (2011) Thermodynamic and electronic study of Ga1–xMnxN films. A theoretical study. Surf Sci 605:1431–1437CrossRef Gomes MC, Leite DMG, Sambrano JR, Dias da Silva JH, de Souza AR, Beltrán A (2011) Thermodynamic and electronic study of Ga1–xMnxN films. A theoretical study. Surf Sci 605:1431–1437CrossRef
58.
Zurück zum Zitat Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351CrossRef Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351CrossRef
Metadaten
Titel
Thermodynamic Equilibria in Systems with Nanoparticles
verfasst von
Jindřich Leitner
David Sedmidubský
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45899-1_18

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.