Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2021

21.03.2021 | Original Article

Thermodynamic formulations of the growth of solid bodies subjected to electromechanical interactions and application to bone external and internal remodeling

verfasst von: J. F. Ganghoffer, X. N. Do, A. Ibrahimbegovic

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermodynamics of open systems exchanging mass, heat, energy and entropy with their environment is examined as a convenient unifying framework to describe the evolution of growing solid bodies subjected to electromechanical stimulations in the context of volumetric growth. Extending the framework of non-equilibrium thermodynamics to open systems, the balance laws for continuum solid bodies undergoing growth phenomena incorporating mass sources and mass fluxes in the presence of electromechanical stimuli are expressed. As an alternative, general balance laws for growing solid bodies in presence of electromechanical couplings are expressed in generic format without explicit consideration of the transport phenomena and chemical reactions responsible for growth and the production of mass. The proposed formulations are next extended to the writing of flexoelectric models for growing solid bodies. Applications to electrically induced bending of thin plates and to the combine volumetric and surface growth of the diaphyseal part of the femur are provided as two illustrations of the derived state laws and kinetic equations for irreversible phenomena. The paper concludes with the elaboration of a combined internal to external surface growth model for bone remodeling describing surface apposition of mineral and local density changes, incorporating the driving effects of both electrical and mechanical signals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahn, A.C., Grodzinsky, A.J.: Relevance of collagen piezoelectricity to “Wolff’s Law”: a critical review. Med. Eng. Phys. 31(7), 733–741 (2009)CrossRef Ahn, A.C., Grodzinsky, A.J.: Relevance of collagen piezoelectricity to “Wolff’s Law”: a critical review. Med. Eng. Phys. 31(7), 733–741 (2009)CrossRef
4.
5.
Zurück zum Zitat Ambrosi, D., Presiosi, L., Vitale, G.: The interplay between stress and growth in solid tumors. Mech. Res. Commun. 42, 87–91 (2012)CrossRef Ambrosi, D., Presiosi, L., Vitale, G.: The interplay between stress and growth in solid tumors. Mech. Res. Commun. 42, 87–91 (2012)CrossRef
6.
Zurück zum Zitat Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM J. Appl. Math. Mech. 94(12), 978–1000 (2014)MathSciNetMATHCrossRef Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM J. Appl. Math. Mech. 94(12), 978–1000 (2014)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. ZAMP J. Appl. Math. Phys. 66(1), 209–237 (2015)MathSciNetMATH Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. ZAMP J. Appl. Math. Phys. 66(1), 209–237 (2015)MathSciNetMATH
8.
Zurück zum Zitat Ateshain, G.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)CrossRef Ateshain, G.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)CrossRef
9.
Zurück zum Zitat Balanis, C.: Advanced Engineering Electromagnetics. Wiley, New York (1999) Balanis, C.: Advanced Engineering Electromagnetics. Wiley, New York (1999)
10.
Zurück zum Zitat Balmer, T.W., Vesztergom, S., Broekmann, P., Stahel, A., Buchler, P.: Characterization of the electrical conductivity of bone and its correlation to osseous structure. Sci. Rep. 8(1), 1–8 (2018)CrossRef Balmer, T.W., Vesztergom, S., Broekmann, P., Stahel, A., Buchler, P.: Characterization of the electrical conductivity of bone and its correlation to osseous structure. Sci. Rep. 8(1), 1–8 (2018)CrossRef
11.
Zurück zum Zitat Bassett, C.A.L., Pawluk, R.J., Becker, R.O.: Effects of electric currents on bone in vivo. Nature 204(4959), 652–654 (1964)ADSCrossRef Bassett, C.A.L., Pawluk, R.J., Becker, R.O.: Effects of electric currents on bone in vivo. Nature 204(4959), 652–654 (1964)ADSCrossRef
12.
Zurück zum Zitat Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J. Orthop. Res. 8(5), 662–670 (1990)CrossRef Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J. Orthop. Res. 8(5), 662–670 (1990)CrossRef
13.
Zurück zum Zitat Cerrolaza, M., Duarte, V., Garzon-Alvarado, D.: Analysis of bone remodeling under piezoelectricity effects using boundary elements. J. Bionic Eng. 14(4), 659–671 (2017)CrossRef Cerrolaza, M., Duarte, V., Garzon-Alvarado, D.: Analysis of bone remodeling under piezoelectricity effects using boundary elements. J. Bionic Eng. 14(4), 659–671 (2017)CrossRef
14.
Zurück zum Zitat Callen, H.B.: Thermodynamics and an Introduction to Thermostatics. Wiley, New York (1985)MATH Callen, H.B.: Thermodynamics and an Introduction to Thermostatics. Wiley, New York (1985)MATH
15.
Zurück zum Zitat Carter, D.R., Van der Meulen, M.C.H., Beaupré, G.S.: Mechanical factors in bone growth and development. Bone 18(1), S5–S10 (1996)CrossRef Carter, D.R., Van der Meulen, M.C.H., Beaupré, G.S.: Mechanical factors in bone growth and development. Bone 18(1), S5–S10 (1996)CrossRef
16.
Zurück zum Zitat Chen, G., Pettet, G.J., Pearcy, M., McElwain, D.L.S.: Modelling external bone adaptation using evolutionary structural optimisation. Biomech. Model. Mechanobiol. 6(4), 275–285 (2007)CrossRef Chen, G., Pettet, G.J., Pearcy, M., McElwain, D.L.S.: Modelling external bone adaptation using evolutionary structural optimisation. Biomech. Model. Mechanobiol. 6(4), 275–285 (2007)CrossRef
18.
Zurück zum Zitat Cowin, S.C., Firoozbakhsh, K.: Bone remodeling of diaphysial surfaces under constant load: theoretical predictions. J. Biomech. 14(7), 471–484 (1981)CrossRef Cowin, S.C., Firoozbakhsh, K.: Bone remodeling of diaphysial surfaces under constant load: theoretical predictions. J. Biomech. 14(7), 471–484 (1981)CrossRef
19.
Zurück zum Zitat De Donder, T.: Leçons de thermodynamique et de chimie physique. Gauthiers-Villars, Paris (1920) De Donder, T.: Leçons de thermodynamique et de chimie physique. Gauthiers-Villars, Paris (1920)
20.
Zurück zum Zitat De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Publication, New York (1984)MATH De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Publication, New York (1984)MATH
21.
Zurück zum Zitat dell’Isola, F., Romano, A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)MathSciNetMATHCrossRef dell’Isola, F., Romano, A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)MathSciNetMATHCrossRef
22.
Zurück zum Zitat dell’Isola, F., Woźniak, C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83(2), 175–189 (1997)CrossRef dell’Isola, F., Woźniak, C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83(2), 175–189 (1997)CrossRef
23.
Zurück zum Zitat Doblaré, M., Garcia, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 35(1), 1–17 (2002)CrossRef Doblaré, M., Garcia, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 35(1), 1–17 (2002)CrossRef
24.
Zurück zum Zitat Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16(7–8), 951–978 (2000)MATHCrossRef Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16(7–8), 951–978 (2000)MATHCrossRef
25.
Zurück zum Zitat Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNetMATH Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNetMATH
26.
Zurück zum Zitat Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)ADSMathSciNetMATHCrossRef Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)ADSMathSciNetMATHCrossRef
27.
Zurück zum Zitat Eremeyev, V.A., Freidin, A.B., Sharipova, L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)MathSciNetCrossRef Eremeyev, V.A., Freidin, A.B., Sharipova, L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)MathSciNetCrossRef
28.
Zurück zum Zitat Eremeyev, V.A., Ganghoffer, J.F., Konopinska-Zmyslowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103–213 (2020)MathSciNetMATHCrossRef Eremeyev, V.A., Ganghoffer, J.F., Konopinska-Zmyslowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103–213 (2020)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 244(877), 87–112 (1951)ADSMathSciNetMATH Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 244(877), 87–112 (1951)ADSMathSciNetMATH
30.
Zurück zum Zitat Fernandes, P., Rodrigues, H., Jacobs, C.: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput. Methods Biomech. Biomed. Eng. 2(2), 125–138 (1999)CrossRef Fernandes, P., Rodrigues, H., Jacobs, C.: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput. Methods Biomech. Biomed. Eng. 2(2), 125–138 (1999)CrossRef
31.
Zurück zum Zitat Fernandez, J., Garcıa-Aznar, J., Martınez, R., Viano, J.: Numerical analysis of a strain-adaptive bone remodelling problem. Comput. Methods Appl. Mech. Eng. 199(23–24), 1549–1557 (2010)ADSMathSciNetMATHCrossRef Fernandez, J., Garcıa-Aznar, J., Martınez, R., Viano, J.: Numerical analysis of a strain-adaptive bone remodelling problem. Comput. Methods Appl. Mech. Eng. 199(23–24), 1549–1557 (2010)ADSMathSciNetMATHCrossRef
32.
Zurück zum Zitat Fotiadis, D.I., Foutsitzi, G., Massalas, C.V.: Wave propagation modeling in human long bones. Acta Mech. 137(1–2), 65–81 (1999)MATHCrossRef Fotiadis, D.I., Foutsitzi, G., Massalas, C.V.: Wave propagation modeling in human long bones. Acta Mech. 137(1–2), 65–81 (1999)MATHCrossRef
33.
Zurück zum Zitat Fridez, P., Terrier, A., Rakotomanana, L., Leyvraz, P.F.: Three dimensional model of bone external adaptation. Comput. Methods Biomech. Biomed. Eng. 2, 189–196 (1998) Fridez, P., Terrier, A., Rakotomanana, L., Leyvraz, P.F.: Three dimensional model of bone external adaptation. Comput. Methods Biomech. Biomed. Eng. 2, 189–196 (1998)
34.
Zurück zum Zitat Fu, J.: Experimental studies of the direct flexoelectric effect in bone materials. In: APS Meeting Abstracts American Physical Society (2010) Fu, J.: Experimental studies of the direct flexoelectric effect in bone materials. In: APS Meeting Abstracts American Physical Society (2010)
35.
Zurück zum Zitat Fudaka, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)ADSCrossRef Fudaka, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)ADSCrossRef
36.
Zurück zum Zitat Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2), 117 (1964)ADSCrossRef Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2), 117 (1964)ADSCrossRef
37.
Zurück zum Zitat Ganghoffer, J.F.: Eshelby tensors, thermodynamics and calculus of variations. Application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010)MATHCrossRef Ganghoffer, J.F.: Eshelby tensors, thermodynamics and calculus of variations. Application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010)MATHCrossRef
38.
Zurück zum Zitat Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation–part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids 58(9), 1434–1459 (2010)ADSMATHCrossRef Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation–part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids 58(9), 1434–1459 (2010)ADSMATHCrossRef
39.
Zurück zum Zitat Ganghoffer, J.F.: Mechanics and thermodynamics of surface growth viewed as moving discontinuities. Mech. Res. Commun. 38(5), 372–377 (2011)MATHCrossRef Ganghoffer, J.F.: Mechanics and thermodynamics of surface growth viewed as moving discontinuities. Mech. Res. Commun. 38(5), 372–377 (2011)MATHCrossRef
40.
Zurück zum Zitat Ganghoffer, J.F.: On Eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010)MathSciNetMATHCrossRef Ganghoffer, J.F.: On Eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Ganghoffer, J.F., Goda, I.: Multiscale Aspects of Bone Internal and External Remodeling. Book: Multiscale Biomechanics (2018) Ganghoffer, J.F., Goda, I.: Multiscale Aspects of Bone Internal and External Remodeling. Book: Multiscale Biomechanics (2018)
42.
Zurück zum Zitat Ganghoffer, J.F., Goda, I.: Modeling of anisotropic remodeling of trabecular bone coupled to fracture. Arch. Appl. Mech. 88, 2101–2121 (2018)ADSCrossRef Ganghoffer, J.F., Goda, I.: Modeling of anisotropic remodeling of trabecular bone coupled to fracture. Arch. Appl. Mech. 88, 2101–2121 (2018)ADSCrossRef
43.
Zurück zum Zitat Goda, I., Ganghoffer, J.F.: Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling. Mech. Res. Commun. 95, 52–60 (2018a)CrossRef Goda, I., Ganghoffer, J.F.: Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling. Mech. Res. Commun. 95, 52–60 (2018a)CrossRef
44.
Zurück zum Zitat Goda, I., Ganghoffer, J.F.: Integrated remodeling to fatigue damage model of bone. Book: Multiscale Biomechanics (2018) Goda, I., Ganghoffer, J.F.: Integrated remodeling to fatigue damage model of bone. Book: Multiscale Biomechanics (2018)
45.
Zurück zum Zitat Ganghoffer, J.F., Sokolowski, J.: A micromechanical approach to volumetric and surface growth in the framework of shape optimization. Int. J. Eng. Sci. 74, 207–226 (2013)MathSciNetMATHCrossRef Ganghoffer, J.F., Sokolowski, J.: A micromechanical approach to volumetric and surface growth in the framework of shape optimization. Int. J. Eng. Sci. 74, 207–226 (2013)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Ganghoffer, J.F., Goda, I.: A combined accretion and surface growth model in the framework of irreversible thermodynamics. Int. J. Eng. Sci. 127, 53–79 (2018)MathSciNetMATHCrossRef Ganghoffer, J.F., Goda, I.: A combined accretion and surface growth model in the framework of irreversible thermodynamics. Int. J. Eng. Sci. 127, 53–79 (2018)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Garijo, N., Fernàndez, J.R., Pérez, M.A., García-Aznar, J.M.: Numerical stability and convergence analysis of bone remodeling model. Comput. Methods Appl. Mech. Eng. 271, 253–268 (2014)ADSMathSciNetMATHCrossRef Garijo, N., Fernàndez, J.R., Pérez, M.A., García-Aznar, J.M.: Numerical stability and convergence analysis of bone remodeling model. Comput. Methods Appl. Mech. Eng. 271, 253–268 (2014)ADSMathSciNetMATHCrossRef
48.
Zurück zum Zitat Gimnes, R., Zaghete, M.A., Bertolini, M., Varela, J.A., Coelho, L.O., Silva, N.F.: Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In: Smart Structures and Materials, vol. 5385, pp. 539–547. International Society for Optics and Photonics, California (2004) Gimnes, R., Zaghete, M.A., Bertolini, M., Varela, J.A., Coelho, L.O., Silva, N.F.: Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In: Smart Structures and Materials, vol. 5385, pp. 539–547. International Society for Optics and Photonics, California (2004)
49.
Zurück zum Zitat Giorgio, I., Andreaus, U., Madeo, A.: The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech. Thermodyn. 28(1–2), 21–40 (2016)ADSMathSciNetMATHCrossRef Giorgio, I., Andreaus, U., Madeo, A.: The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech. Thermodyn. 28(1–2), 21–40 (2016)ADSMathSciNetMATHCrossRef
50.
Zurück zum Zitat Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)CrossRef Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)CrossRef
51.
Zurück zum Zitat Goda, I., Ganghoffer, J.F.: Construction of first and second order grade anisotropic continuum media for 3D porous and textile composite structures. Compos. Struct. 141, 292–327 (2016)CrossRef Goda, I., Ganghoffer, J.F.: Construction of first and second order grade anisotropic continuum media for 3D porous and textile composite structures. Compos. Struct. 141, 292–327 (2016)CrossRef
52.
Zurück zum Zitat Goda, I., Ganghoffer, J.F., Maurice, G.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94, 138–157 (2016)CrossRef Goda, I., Ganghoffer, J.F., Maurice, G.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94, 138–157 (2016)CrossRef
53.
Zurück zum Zitat Goda, I., Assidi, M., Ganghoffer, J.F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)ADSCrossRef Goda, I., Assidi, M., Ganghoffer, J.F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)ADSCrossRef
54.
Zurück zum Zitat Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)CrossRef Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)CrossRef
55.
Zurück zum Zitat Goodstein, J.: States of Matter. Dover Phoenix Edition (1975) Goodstein, J.: States of Matter. Dover Phoenix Edition (1975)
56.
Zurück zum Zitat Han, B., Bai, X.H., Lodyga, M., Xu, J., Yang, B.B., Keshavjee, S., Post, M., Liu, M.: Conversion of mechanical forces into biochemical signaling. J. Biol. Chem. 279(52), 54793–54801 (2004)CrossRef Han, B., Bai, X.H., Lodyga, M., Xu, J., Yang, B.B., Keshavjee, S., Post, M., Liu, M.: Conversion of mechanical forces into biochemical signaling. J. Biol. Chem. 279(52), 54793–54801 (2004)CrossRef
57.
Zurück zum Zitat Helmlinger, G., Netti, P.A., Lichtenfeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits the growth of multicellular tumour spheroids. Nat. Biotechnol. 15(8), 778–783 (1997)CrossRef Helmlinger, G., Netti, P.A., Lichtenfeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits the growth of multicellular tumour spheroids. Nat. Biotechnol. 15(8), 778–783 (1997)CrossRef
58.
Zurück zum Zitat Himpel, G., Kuhl, E., Menzel, A., Steinmann, P.: Computational modelling of isotropic multiplicative growth. Comput. Model. Eng. Sci. 8(2), 119–134 (2005)MATH Himpel, G., Kuhl, E., Menzel, A., Steinmann, P.: Computational modelling of isotropic multiplicative growth. Comput. Model. Eng. Sci. 8(2), 119–134 (2005)MATH
59.
Zurück zum Zitat Hoffman, B.D., Grashoff, C., Schwartz, M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356), 316–323 (2011)CrossRef Hoffman, B.D., Grashoff, C., Schwartz, M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356), 316–323 (2011)CrossRef
60.
Zurück zum Zitat Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1(4), 303–311 (1968)CrossRef Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1(4), 303–311 (1968)CrossRef
61.
Zurück zum Zitat Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987)CrossRef Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987)CrossRef
62.
Zurück zum Zitat Huiskes, R., Ruimerman, R., van Lenthe, G.H., Janssen, J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704–706 (2000)ADSCrossRef Huiskes, R., Ruimerman, R., van Lenthe, G.H., Janssen, J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704–706 (2000)ADSCrossRef
63.
Zurück zum Zitat Ibrahimbegovic, A.: Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods. Springer, Berlin (2009)MATHCrossRef Ibrahimbegovic, A.: Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods. Springer, Berlin (2009)MATHCrossRef
64.
Zurück zum Zitat Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)MATH Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)MATH
65.
Zurück zum Zitat Kaczmarczyk, L., Pearce, C.J.: Efficient numerical analysis of bone remodelling. J. Mech. Behav. Biomed. Mater. 4(6), 858–867 (2011)CrossRef Kaczmarczyk, L., Pearce, C.J.: Efficient numerical analysis of bone remodelling. J. Mech. Behav. Biomed. Mater. 4(6), 858–867 (2011)CrossRef
66.
Zurück zum Zitat Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys. Solid State 5(10), 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys. Solid State 5(10), 2069–2070 (1964)
67.
Zurück zum Zitat Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York (1988)MATH Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York (1988)MATH
68.
Zurück zum Zitat Kuhl, E., Menzel, A., Steinmann, P.: Computational modeling of growth. Comput. Mech. 32(1–2), 71–88 (2003)MATHCrossRef Kuhl, E., Menzel, A., Steinmann, P.: Computational modeling of growth. Comput. Mech. 32(1–2), 71–88 (2003)MATHCrossRef
69.
70.
Zurück zum Zitat Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)ADSMathSciNetMATHCrossRef Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)ADSMathSciNetMATHCrossRef
71.
Zurück zum Zitat Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S., Sansalone, V.: What is the importance of multiphysical phenomena in bone remodeling signals expression? A multiscale perspective. J. Mech. Behav. Biomed. Mater. 4(6), 909–920 (2011)MATHCrossRef Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S., Sansalone, V.: What is the importance of multiphysical phenomena in bone remodeling signals expression? A multiscale perspective. J. Mech. Behav. Biomed. Mater. 4(6), 909–920 (2011)MATHCrossRef
73.
Zurück zum Zitat Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides. Dunod, Paris (2009) Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides. Dunod, Paris (2009)
74.
Zurück zum Zitat Levenston, M.E., Carter, D.R.: An energy dissipation- based model for damage stimulated bone adaptation. J. Biomech. 31(7), 579–586 (1998)CrossRef Levenston, M.E., Carter, D.R.: An energy dissipation- based model for damage stimulated bone adaptation. J. Biomech. 31(7), 579–586 (1998)CrossRef
75.
Zurück zum Zitat Louna, Z., Goda, I., Ganghoffer, J.F., Benhadid, S.: Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level. Arch. Appl. Mech. 87(3), 457–477 (2016)CrossRef Louna, Z., Goda, I., Ganghoffer, J.F., Benhadid, S.: Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level. Arch. Appl. Mech. 87(3), 457–477 (2016)CrossRef
76.
Zurück zum Zitat Louna, Z., Goda, I., Ganghoffer, J.F.: Identification of a constitutive law for trabecular bone samples under remodeling in the framework of irreversible thermodynamics. Continuum Mech. Thermodyn. 30(3), 529–551 (2018)MathSciNetMATHCrossRef Louna, Z., Goda, I., Ganghoffer, J.F.: Identification of a constitutive law for trabecular bone samples under remodeling in the framework of irreversible thermodynamics. Continuum Mech. Thermodyn. 30(3), 529–551 (2018)MathSciNetMATHCrossRef
77.
Zurück zum Zitat Louna, Z., Goda, I., Ganghoffer, J.F.: Homogenized strain gradient remodeling model for trabecular bone microstructures. Continuum Mech. Thermodyn. 31(5), 1339–1367 (2019)ADSMathSciNetCrossRef Louna, Z., Goda, I., Ganghoffer, J.F.: Homogenized strain gradient remodeling model for trabecular bone microstructures. Continuum Mech. Thermodyn. 31(5), 1339–1367 (2019)ADSMathSciNetCrossRef
78.
Zurück zum Zitat Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)ADSCrossRef Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)ADSCrossRef
79.
Zurück zum Zitat Marieb, E.N., Hoehn, K., Human Anatomy & Physiology, 9th edn. Pearson Education (2013) Marieb, E.N., Hoehn, K., Human Anatomy & Physiology, 9th edn. Pearson Education (2013)
80.
Zurück zum Zitat Martin, R.B.: Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J. Orthop. Res. 13(3), 309–316 (1995)CrossRef Martin, R.B.: Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J. Orthop. Res. 13(3), 309–316 (1995)CrossRef
81.
Zurück zum Zitat Martins, P., Ribeiro, S., Ribeiro, C., Sensaclas, V., Gomes, A., Gama, F., Lanceros-Mendez, S.: Effect of poling state and morphology of piezoelectric poly (vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv. 3(39), 17938–17944 (2013)ADSCrossRef Martins, P., Ribeiro, S., Ribeiro, C., Sensaclas, V., Gomes, A., Gama, F., Lanceros-Mendez, S.: Effect of poling state and morphology of piezoelectric poly (vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv. 3(39), 17938–17944 (2013)ADSCrossRef
82.
Zurück zum Zitat Mashkevich, V.S., Tolpygo, K.B.: The interaction of vibrations of nonpolar crystals with electric fields. Soviet Phys. Dokl. 4, 455 (1957) Mashkevich, V.S., Tolpygo, K.B.: The interaction of vibrations of nonpolar crystals with electric fields. Soviet Phys. Dokl. 4, 455 (1957)
83.
Zurück zum Zitat Maugin, G.A.: The Thermodynamics of Nonlinear Irreversible Behaviours. World Scientific, Singapoure (1990) Maugin, G.A.: The Thermodynamics of Nonlinear Irreversible Behaviours. World Scientific, Singapoure (1990)
84.
85.
Zurück zum Zitat Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)CrossRef Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)CrossRef
86.
Zurück zum Zitat McNamara, B.P., Prendergast, P.J., Taylor, D.: Prediction of bone adaptation in the ulnar-osteotomized sheep’s forelimb using an anatomical finite element model. J. Biomed. Eng. 14(3), 209–216 (1992)CrossRef McNamara, B.P., Prendergast, P.J., Taylor, D.: Prediction of bone adaptation in the ulnar-osteotomized sheep’s forelimb using an anatomical finite element model. J. Biomed. Eng. 14(3), 209–216 (1992)CrossRef
87.
Zurück zum Zitat Marquez Gamino, S., Sotelo, F., Sosa, M., Cudillo, C., Holguin, G., Ramos, M., Mesa, F., Bernal, J., Cordova, T.: Pulsed electromagnetic fields induced femoral metaphyseal bone thickness changes in the rat. Bioelectromagnetics 29, 406–409 (2008)CrossRef Marquez Gamino, S., Sotelo, F., Sosa, M., Cudillo, C., Holguin, G., Ramos, M., Mesa, F., Bernal, J., Cordova, T.: Pulsed electromagnetic fields induced femoral metaphyseal bone thickness changes in the rat. Bioelectromagnetics 29, 406–409 (2008)CrossRef
88.
Zurück zum Zitat Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design—homogenization approach. J. Mech. Phys. Solids 53(11), 2529–2556 (2005)ADSMathSciNetMATHCrossRef Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design—homogenization approach. J. Mech. Phys. Solids 53(11), 2529–2556 (2005)ADSMathSciNetMATHCrossRef
90.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef
91.
Zurück zum Zitat Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)MATHCrossRef Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)MATHCrossRef
92.
Zurück zum Zitat Mohamadi, P., Liu, L., Sharma, P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. J. Appl. Mech. 81(1), 011007 (2014)CrossRef Mohamadi, P., Liu, L., Sharma, P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. J. Appl. Mech. 81(1), 011007 (2014)CrossRef
93.
Zurück zum Zitat Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S.: A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019)CrossRef Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S.: A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019)CrossRef
94.
Zurück zum Zitat More, N., Kapusetti, G.: Piezoelectric material—a promising approach for bone and cartilage regeneration. Med. Hypotheses 108, 10–16 (2017)CrossRef More, N., Kapusetti, G.: Piezoelectric material—a promising approach for bone and cartilage regeneration. Med. Hypotheses 108, 10–16 (2017)CrossRef
95.
Zurück zum Zitat Moreno-Navarro, P., Ibrahimbegovic, A., Perez-Aparicio, J.L.: Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst. Mech. 7(1), 5–25 (2018) Moreno-Navarro, P., Ibrahimbegovic, A., Perez-Aparicio, J.L.: Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst. Mech. 7(1), 5–25 (2018)
96.
Zurück zum Zitat Moreno-Navarro, P.: Multiphysics formulation and multiscale finite element discretizations of thermo-electro-magneto-mechanic coupling for smart materials design. PhD thesis, Université de Technologie de Compiègne, France (2019) Moreno-Navarro, P.: Multiphysics formulation and multiscale finite element discretizations of thermo-electro-magneto-mechanic coupling for smart materials design. PhD thesis, Université de Technologie de Compiègne, France (2019)
97.
Zurück zum Zitat Munster, A.: Thermodynamique des processus irréversibles. Presses Universitaires de France, Paris (1966) Munster, A.: Thermodynamique des processus irréversibles. Presses Universitaires de France, Paris (1966)
98.
Zurück zum Zitat Muschik, W.: Fundamentals of non-equilibrium thermodynamics. In: Proceedings of CISM Course and Lectures \(N^\circ 336\). Non-equilibrium thermodynamics with applications to solids. Ed. By W. Muschik (1993) Muschik, W.: Fundamentals of non-equilibrium thermodynamics. In: Proceedings of CISM Course and Lectures \(N^\circ 336\). Non-equilibrium thermodynamics with applications to solids. Ed. By W. Muschik (1993)
99.
Zurück zum Zitat Negus, C., Impelluso, T.: Continuum remodeling revisited. Biomech. Model. Mechanobiol. 6(4), 211–226 (2007)CrossRef Negus, C., Impelluso, T.: Continuum remodeling revisited. Biomech. Model. Mechanobiol. 6(4), 211–226 (2007)CrossRef
100.
Zurück zum Zitat Nuner-toldra, R., Vasquez-Sancho, F., Barroca, N., Catalan, G.: Investigation of the cellular response to bone fractures: evidence for flexoelectricity. Sci. Rep. Nat. Res. 10, 254 (2020)ADSCrossRef Nuner-toldra, R., Vasquez-Sancho, F., Barroca, N., Catalan, G.: Investigation of the cellular response to bone fractures: evidence for flexoelectricity. Sci. Rep. Nat. Res. 10, 254 (2020)ADSCrossRef
101.
Zurück zum Zitat Otter, M., Goheen, S., Williams, W.: Streaming potentials in chemically modified bone. J. Orthop. Res. 6(3), 346–359 (1988)CrossRef Otter, M., Goheen, S., Williams, W.: Streaming potentials in chemically modified bone. J. Orthop. Res. 6(3), 346–359 (1988)CrossRef
102.
Zurück zum Zitat Pietraszkiewicz, W., Eremeyev, V., Konopinìska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik/J. Appl. Math. Mech. 87(2), 150–159 (2007)ADSMathSciNetMATHCrossRef Pietraszkiewicz, W., Eremeyev, V., Konopinìska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik/J. Appl. Math. Mech. 87(2), 150–159 (2007)ADSMathSciNetMATHCrossRef
103.
Zurück zum Zitat Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Continuum Mech. Thermodyn. 17(6), 409–451 (2006)ADSMathSciNetMATHCrossRef Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Continuum Mech. Thermodyn. 17(6), 409–451 (2006)ADSMathSciNetMATHCrossRef
104.
Zurück zum Zitat Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27(8), 1067–1076 (1994)CrossRef Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27(8), 1067–1076 (1994)CrossRef
105.
Zurück zum Zitat Prigogine, I.: Introduction à la thermodynamique des processus irréversibles. Dunod, Paris (1968) Prigogine, I.: Introduction à la thermodynamique des processus irréversibles. Dunod, Paris (1968)
106.
Zurück zum Zitat Rajabi, A.H., Jaffe, M., Arinzeh, T.L.: Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12–23 (2015)CrossRef Rajabi, A.H., Jaffe, M., Arinzeh, T.L.: Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12–23 (2015)CrossRef
107.
Zurück zum Zitat Ramtani, S., Zidi, M.: Damaged-bone remodeling theory: thermodynamical approach. Mech. Res. Commun. 26(6), 701–708 (1999)MATHCrossRef Ramtani, S., Zidi, M.: Damaged-bone remodeling theory: thermodynamical approach. Mech. Res. Commun. 26(6), 701–708 (1999)MATHCrossRef
108.
Zurück zum Zitat Ramtani, S., Zidi, M.: A theoretical model of the effect of continuum damage on a bone adaptation model. J. Biomech. 34(4), 471–479 (2001)CrossRef Ramtani, S., Zidi, M.: A theoretical model of the effect of continuum damage on a bone adaptation model. J. Biomech. 34(4), 471–479 (2001)CrossRef
109.
Zurück zum Zitat Reis, J., Frias, C., Canto et Castro, C., Botelho, M.L., Marques, A.T., Jao, S., Capela e Silva, F., Potes, J.: A new piezoelectric actuator induces bone formation in vivo: a preliminary study. BioMed Res. Int. 613403 (2012) Reis, J., Frias, C., Canto et Castro, C., Botelho, M.L., Marques, A.T., Jao, S., Capela e Silva, F., Potes, J.: A new piezoelectric actuator induces bone formation in vivo: a preliminary study. BioMed Res. Int. 613403 (2012)
110.
Zurück zum Zitat Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)CrossRef Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)CrossRef
111.
Zurück zum Zitat Sanchez, F.V.: Flexoelectricity in Biomaterials. PhD Thesis, University of Barcelona (2018) Sanchez, F.V.: Flexoelectricity in Biomaterials. PhD Thesis, University of Barcelona (2018)
112.
Zurück zum Zitat Shingare, K.B., Kundalwal, S.I.: Static and dynamic response of graphene nanocomposite plates with flexoelectric effect. Mech. Mater. 134, 69–84 (2019)CrossRef Shingare, K.B., Kundalwal, S.I.: Static and dynamic response of graphene nanocomposite plates with flexoelectric effect. Mech. Mater. 134, 69–84 (2019)CrossRef
113.
Zurück zum Zitat Skalak, R.: Growth as a finite displacement field. In: Carlsson, D.E., Shield, R.T. (Eds.). Proceedings of the IUTAM Symposium on Finite Elasticity, pp. 347–355. Martinus Nijhoff, The Hague (1981) Skalak, R.: Growth as a finite displacement field. In: Carlsson, D.E., Shield, R.T. (Eds.). Proceedings of the IUTAM Symposium on Finite Elasticity, pp. 347–355. Martinus Nijhoff, The Hague (1981)
115.
Zurück zum Zitat Taber, L.: Biomechanics of growth, remodeling and morphogenesis. Appl. Mech. Rev. 48, 487–545 (1995)ADSCrossRef Taber, L.: Biomechanics of growth, remodeling and morphogenesis. Appl. Mech. Rev. 48, 487–545 (1995)ADSCrossRef
116.
Zurück zum Zitat Thompson, W.: Lord Kelvin. Proc. R. Soc. Edinb. 3, 225 (1854) Thompson, W.: Lord Kelvin. Proc. R. Soc. Edinb. 3, 225 (1854)
117.
Zurück zum Zitat Tendon, B., Balker, J.R., Cartmell, A.H.: Piezoelectric biomaterials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018)CrossRef Tendon, B., Balker, J.R., Cartmell, A.H.: Piezoelectric biomaterials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018)CrossRef
118.
Zurück zum Zitat Tortora, G.J., Derrickson, B.H.: Principles of Anatomy and Physiology, 13th Edition, Wiley, Truesdell, C., Toupin, R.: The classical field theories. In: Flugge, S. (ed). Handbuch der Physik, vol. III/I. Springer, Heidelberg (1960, 2011) Tortora, G.J., Derrickson, B.H.: Principles of Anatomy and Physiology, 13th Edition, Wiley, Truesdell, C., Toupin, R.: The classical field theories. In: Flugge, S. (ed). Handbuch der Physik, vol. III/I. Springer, Heidelberg (1960, 2011)
120.
Zurück zum Zitat van der Meulen, M.C.H., Beaupré, G.S., Carter, D.R.: Mechanobiologic influences in long bone crosssectional growth. Bone 14(4), 635–642 (1993)CrossRef van der Meulen, M.C.H., Beaupré, G.S., Carter, D.R.: Mechanobiologic influences in long bone crosssectional growth. Bone 14(4), 635–642 (1993)CrossRef
121.
Zurück zum Zitat Wagner, D.W., Lindsey, D.P., Beaupre, G.S.: Deriving tissue density and elastic modulus from microCT bone scans. Bone 49(5), 931–938 (2011)CrossRef Wagner, D.W., Lindsey, D.P., Beaupre, G.S.: Deriving tissue density and elastic modulus from microCT bone scans. Bone 49(5), 931–938 (2011)CrossRef
122.
Zurück zum Zitat Wang, K.F., Wang, B.L.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 116, 88–103 (2017)CrossRef Wang, K.F., Wang, B.L.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 116, 88–103 (2017)CrossRef
123.
Zurück zum Zitat Wang, B., Gu, Y., Shujun, Z., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges, and perspective. Prog. Mater Sci. 106, 100570 (2019)CrossRef Wang, B., Gu, Y., Shujun, Z., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges, and perspective. Prog. Mater Sci. 106, 100570 (2019)CrossRef
124.
Zurück zum Zitat Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25(12), 1425–1441 (1992)CrossRef Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25(12), 1425–1441 (1992)CrossRef
125.
Zurück zum Zitat Wiesman, H.P., Hartig, M., Stratmann, U., Meyer, U., Joos, U.: Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et Biophysica Acta (BBA) Mol. Cell Res. 1538(1), 28–37 (2001)CrossRef Wiesman, H.P., Hartig, M., Stratmann, U., Meyer, U., Joos, U.: Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et Biophysica Acta (BBA) Mol. Cell Res. 1538(1), 28–37 (2001)CrossRef
126.
Zurück zum Zitat Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)ADSCrossRef Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)ADSCrossRef
127.
Zurück zum Zitat Wolff, J.: Das gesetz der transformation der knoche. Hirschwald Verlag, Berlin (1892) Wolff, J.: Das gesetz der transformation der knoche. Hirschwald Verlag, Berlin (1892)
128.
Zurück zum Zitat Zhu, C., Bao, G., Wang, N.: Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2(1), 189–226 (2000)CrossRef Zhu, C., Bao, G., Wang, N.: Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2(1), 189–226 (2000)CrossRef
129.
Zurück zum Zitat Zimmermann, E.A., et al.: Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci. Rep. 6, 21072 (2016)ADSCrossRef Zimmermann, E.A., et al.: Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci. Rep. 6, 21072 (2016)ADSCrossRef
Metadaten
Titel
Thermodynamic formulations of the growth of solid bodies subjected to electromechanical interactions and application to bone external and internal remodeling
verfasst von
J. F. Ganghoffer
X. N. Do
A. Ibrahimbegovic
Publikationsdatum
21.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-00986-5

Weitere Artikel der Ausgabe 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.