Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 5/2018

02.05.2018 | Original Paper

Thermodynamic performance analysis of three solid oxide fuel cell and gas microturbine hybrid systems for application in auxiliary power units

verfasst von: Jamasb Pirkandi, Mehdi Jahromi, Seyedeh Zeynab Sajadi, Mohammad Ommian

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, three different configurations of a solid oxide fuel cell and gas microturbine hybrid system are evaluated for application in auxiliary power units. The first configuration is a common hybrid system in auxiliary power units, utilizing a fuel cell stack in the structure of the gas turbine cycle. The other configurations use two series and parallel fuel cell stacks in the structure of the gas turbine cycle. The main purpose of this research is thermodynamic analysis, evaluation of the performance of the proposed hybrid systems in similar conditions, and selection of an appropriate system in terms of efficiency, power generation, and entropy generation rate. In this study, the utilized fuel cells were subjected to electrochemical, thermodynamic, and thermal analyses and their working temperatures were calculated under various working conditions. Results indicate that the hybrid system with two series stacks had maximum power generation and efficiency compared with the other two cases. Moreover, the simple hybrid system and the system with two parallel stacks had relatively equal pure power generation and efficiency. According to the investigations, hybrid system with two series fuel cell stacks, which had 3424 and 1712 cells, respectively, can achieve the electrical efficiency of over 48%. A hybrid system with two parallel fuel cell stacks, in which each stack had 2568 cells, had the electrical efficiency of 46.3%. Findings suggested that maximum electrical efficiency occurred between the pressure ratios of 5–6 in the proposed hybrid systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Buonomano A, Calise F, Dentice d’Accadia M, Palombo A, Vicidomini M (2015) Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: a review. J Appl Energy 156:32–85CrossRef Buonomano A, Calise F, Dentice d’Accadia M, Palombo A, Vicidomini M (2015) Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: a review. J Appl Energy 156:32–85CrossRef
Zurück zum Zitat Chan SH, Ho HK, Tian Y (2002) Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant. J Power Sources 109:111–120CrossRef Chan SH, Ho HK, Tian Y (2002) Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant. J Power Sources 109:111–120CrossRef
Zurück zum Zitat Cheddie DF (2011) Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. J Int J Hydrog Energy 36:1702–1709CrossRef Cheddie DF (2011) Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. J Int J Hydrog Energy 36:1702–1709CrossRef
Zurück zum Zitat Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. J Renew Sustain Energy Rev 20:430–442CrossRef Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. J Renew Sustain Energy Rev 20:430–442CrossRef
Zurück zum Zitat Ciesar JA (2001) Hybrid systems development by the siemens westinghouse power corporation. US Department of Energy, Natural Gas/Renewable Energy Hybrids Workshop, Morgantown, pp 7–8 Ciesar JA (2001) Hybrid systems development by the siemens westinghouse power corporation. US Department of Energy, Natural Gas/Renewable Energy Hybrids Workshop, Morgantown, pp 7–8
Zurück zum Zitat Daggett D, Freeh J, Balan C, Birmingham D (2003) Fuel cell APU for commercial aircraft. Fuel cell seminar abstracts, Miami, FL, USA Daggett D, Freeh J, Balan C, Birmingham D (2003) Fuel cell APU for commercial aircraft. Fuel cell seminar abstracts, Miami, FL, USA
Zurück zum Zitat Ebrahimi M, Moradpoor I (2016) Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC–MGT–ORC). J Energy Convers Manag 116:120–133CrossRef Ebrahimi M, Moradpoor I (2016) Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC–MGT–ORC). J Energy Convers Manag 116:120–133CrossRef
Zurück zum Zitat Facchinetti E, Favrat D, Marechal F (2014) Design and optimization of an innovative solid oxide fuel cell–gas turbine hybrid cycle for small scale distributed generation. J Fuel Cells 4(14):595–606CrossRef Facchinetti E, Favrat D, Marechal F (2014) Design and optimization of an innovative solid oxide fuel cell–gas turbine hybrid cycle for small scale distributed generation. J Fuel Cells 4(14):595–606CrossRef
Zurück zum Zitat Fryda L, Panopoulos KD, Kakaras E (2008) Integrated CHP with autothermal biomass gasification and SOFC–MGT. J Energy Convers Manag 49:281–290CrossRef Fryda L, Panopoulos KD, Kakaras E (2008) Integrated CHP with autothermal biomass gasification and SOFC–MGT. J Energy Convers Manag 49:281–290CrossRef
Zurück zum Zitat Haseli Y, Dincer I, Naterer GF (2008) Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. J Hydrog Energy 33:5811–5822CrossRef Haseli Y, Dincer I, Naterer GF (2008) Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. J Hydrog Energy 33:5811–5822CrossRef
Zurück zum Zitat Horlock JH (2003) Advanced gas turbine cycles: a brief review of power generation thermodynamics. Elsevier, Amsterdam Horlock JH (2003) Advanced gas turbine cycles: a brief review of power generation thermodynamics. Elsevier, Amsterdam
Zurück zum Zitat Musa A, Paepe M (2008) Performance of combined internally reformed intermediate high temperature SOFC cycle compared to internally reformed two-staged intermediate temperature SOFC cycle. J Hydrog Energy 33:4665–4672CrossRef Musa A, Paepe M (2008) Performance of combined internally reformed intermediate high temperature SOFC cycle compared to internally reformed two-staged intermediate temperature SOFC cycle. J Hydrog Energy 33:4665–4672CrossRef
Zurück zum Zitat Pirkandi J, Ghassemi M, Hamedi MH, Mohammadi R (2012) Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP). J Clean Prod 29–30:151–162CrossRef Pirkandi J, Ghassemi M, Hamedi MH, Mohammadi R (2012) Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP). J Clean Prod 29–30:151–162CrossRef
Zurück zum Zitat Pirkandi J, Mahmoodi M, Ommian M (2017a) An optimal configuration for a solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system based on thermo-economic modelling. J Clean Prod 144:375–386CrossRef Pirkandi J, Mahmoodi M, Ommian M (2017a) An optimal configuration for a solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system based on thermo-economic modelling. J Clean Prod 144:375–386CrossRef
Zurück zum Zitat Pirkandi J, Mahmoodi M, Ommian M (2017b) Thermo-economic performance analysis of a gas turbine generator equipped with a pressurized and an atmospheric solid oxide fuel cell. J Energy Convers Manag 136:249–261CrossRef Pirkandi J, Mahmoodi M, Ommian M (2017b) Thermo-economic performance analysis of a gas turbine generator equipped with a pressurized and an atmospheric solid oxide fuel cell. J Energy Convers Manag 136:249–261CrossRef
Zurück zum Zitat Roy D, Ghosh S (2017) Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle. J Clean Technol Environ Policy 19:1693–1709CrossRef Roy D, Ghosh S (2017) Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle. J Clean Technol Environ Policy 19:1693–1709CrossRef
Zurück zum Zitat Singhal SC (2000) Advances in solid oxide fuel cells. J Solid State Ion 135:305–313CrossRef Singhal SC (2000) Advances in solid oxide fuel cells. J Solid State Ion 135:305–313CrossRef
Zurück zum Zitat Volkan Akkaya A (2007) Electrochemical model for performance analysis of a tubular SOFC. Int J Energy Res 31:79–98CrossRef Volkan Akkaya A (2007) Electrochemical model for performance analysis of a tubular SOFC. Int J Energy Res 31:79–98CrossRef
Zurück zum Zitat Williams MC (2002) Fuel cell handbook. US Department of Energy, Virginia Williams MC (2002) Fuel cell handbook. US Department of Energy, Virginia
Zurück zum Zitat Zhang X, Chan SH, Li G, Hob HK, Li J, Fenga Z (2010) A review of integration strategies for solid oxide fuel cells. J Power Sources 195:685–702CrossRef Zhang X, Chan SH, Li G, Hob HK, Li J, Fenga Z (2010) A review of integration strategies for solid oxide fuel cells. J Power Sources 195:685–702CrossRef
Metadaten
Titel
Thermodynamic performance analysis of three solid oxide fuel cell and gas microturbine hybrid systems for application in auxiliary power units
verfasst von
Jamasb Pirkandi
Mehdi Jahromi
Seyedeh Zeynab Sajadi
Mohammad Ommian
Publikationsdatum
02.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 5/2018
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-018-1534-2

Weitere Artikel der Ausgabe 5/2018

Clean Technologies and Environmental Policy 5/2018 Zur Ausgabe