Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2016

20.01.2016 | Symposium: Micromechanics of Advanced Materials III in Honor of J.C.M. Li

Thermodynamic Predictions of Thermal Expansivity and Elastic Compliances at High Temperatures and Pressures Applied to Perovskite Crystals

verfasst von: S. J. Burns

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The possibility of near zero thermal expansion coefficients at very high pressures is explored for application to the Earth’s core materials and mantle dynamics. The pressures in the Earth are large enough to effectively reduce thermal expansion coefficients to values which will decouple heat from mechanical work. It is shown that at pressures below the bulk modulus the thermal expansion coefficient will approach zero in all simple linear-elastic crystalline models. Advanced models of crystalline elastic solids based on interatomic potentials and density functional theory are shown to violate Gibb’s potential for a solid, crystalline material described by three elastic matrix compliance entries; it is established that the temperature dependence of S 11 and S 12 are thermodynamically identical; it is also established that the pressure dependence of S 11 and S 12 are thermodynamically identical. The basis for thermal energy in materials is the phonon energy in solids. However, it is noted that heat capacity measurements which are obtained from constant pressure heat capacity conditions converted to constant volume values on isobars are not in the correct state when compared to theoretical models; at atmospheric pressure there may be very little difference between these states but at very high pressures the effect may be major. Very large pressures always reduce thermal expansion coefficients; the importance of very small thermal expansion coefficients is discussed in relation to physical processes deep in the core and mantle of the Earth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Gibbs: Collected Works. Volume I, Thermodynamics, Yale University Press, New Haven, 1948, pp. 184–218. J.W. Gibbs: Collected Works. Volume I, Thermodynamics, Yale University Press, New Haven, 1948, pp. 184–218.
2.
Zurück zum Zitat Li, J.C.M., Metall. Trans. A, 9A, 1353-1380, 1978. (The Institute of Metals Division Lecturer and 1978 R. F. Mehl Gold Medalist). Li, J.C.M., Metall. Trans. A, 9A, 1353-1380, 1978. (The Institute of Metals Division Lecturer and 1978 R. F. Mehl Gold Medalist).
3.
Zurück zum Zitat Runge, C. E., Kubo, A., Kiefer, B., Meng, Y., Prakapenka, V.B., Shen, G., Cava, R.J. Duffy, T.S., Equations of State of MgGeO 3 Perovskite to 65 GPa: Comparison with the Post-Perovskite Phase, Phys. Chem. Minerals 33, 699-709, 2006.CrossRef Runge, C. E., Kubo, A., Kiefer, B., Meng, Y., Prakapenka, V.B., Shen, G., Cava, R.J. Duffy, T.S., Equations of State of MgGeO 3 Perovskite to 65 GPa: Comparison with the Post-Perovskite Phase, Phys. Chem. Minerals 33, 699-709, 2006.CrossRef
4.
Zurück zum Zitat Einstein, A., Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Physik, 22, 180-190, 1907. Einstein, A., Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Physik, 22, 180-190, 1907.
5.
Zurück zum Zitat Einstein, A., Ann Physik, Eine Beziehung zwischen dem elastischen Verhalten und der spezifischen Wärme bei festen Körpern mit einatomigem Molekül, 34, 170-174, 1911.CrossRef Einstein, A., Ann Physik, Eine Beziehung zwischen dem elastischen Verhalten und der spezifischen Wärme bei festen Körpern mit einatomigem Molekül, 34, 170-174, 1911.CrossRef
6.
Zurück zum Zitat Debye, P., Zur Theorie der spezifischen Wärmen, Ann. Physik 39, 789-839, 1912.CrossRef Debye, P., Zur Theorie der spezifischen Wärmen, Ann. Physik 39, 789-839, 1912.CrossRef
7.
Zurück zum Zitat P. Debye: in Lattice Dynamics. Proc. Copenhagen Conf. August 1963, R.F. Wallis, ed., Pergamon Press, Inc. London, 1964. P. Debye: in Lattice Dynamics. Proc. Copenhagen Conf. August 1963, R.F. Wallis, ed., Pergamon Press, Inc. London, 1964.
8.
Zurück zum Zitat N.W. Ashcroft and N.D. Mermin: Solid State Physics, Holt, Rinehart and Winston, New York, pp 421–50, 1976. N.W. Ashcroft and N.D. Mermin: Solid State Physics, Holt, Rinehart and Winston, New York, pp 421–50, 1976.
9.
Zurück zum Zitat Burns, S. J., G. Dahake, Z. Ding, S. Kudallur, S. Kumar, K. Li, R. Srinivasan, K. Stack, N. Venkataraman, C. Wang, F. Yang, and Y. Zhou, J. Am. Ceram. Soc., 75, 3341 (1992).CrossRef Burns, S. J., G. Dahake, Z. Ding, S. Kudallur, S. Kumar, K. Li, R. Srinivasan, K. Stack, N. Venkataraman, C. Wang, F. Yang, and Y. Zhou, J. Am. Ceram. Soc., 75, 3341 (1992).CrossRef
10.
Zurück zum Zitat E. Grüneisen: Zustand des Festen Korpers Handbuuch der Physics., vol. 10, Julius Springer, Berlin, pp. 1–52, 1926. see: National Aeronautics and Space Administration, Republication 2-18-59W Translation of Grüneisen including 76 diagrams, February, 1959. E. Grüneisen: Zustand des Festen Korpers Handbuuch der Physics., vol. 10, Julius Springer, Berlin, pp. 1–52, 1926. see: National Aeronautics and Space Administration, Republication 2-18-59W Translation of Grüneisen including 76 diagrams, February, 1959.
11.
Zurück zum Zitat J.F. Nye: Physical Properties of Crystals, Oxford University Press, London, pp. 82–109, and 131–191, 1964. J.F. Nye: Physical Properties of Crystals, Oxford University Press, London, pp. 82–109, and 131–191, 1964.
12.
Zurück zum Zitat Ledbetter, H. M. and Reed, R. P., Elastic Properties of Metals and Alloys, I Iron, Nickel, and Iron-Nickel Alloys, J. Phys. Ref. Data, 2, 531-617, 1973.CrossRef Ledbetter, H. M. and Reed, R. P., Elastic Properties of Metals and Alloys, I Iron, Nickel, and Iron-Nickel Alloys, J. Phys. Ref. Data, 2, 531-617, 1973.CrossRef
13.
Zurück zum Zitat Burns, S. J., Thermodynamics of the Superconducting Phase Transformation in High T c Ceramics with Magneto-electric Effects, J. Mater. Res., 4, 33, 1989.CrossRef Burns, S. J., Thermodynamics of the Superconducting Phase Transformation in High T c Ceramics with Magneto-electric Effects, J. Mater. Res., 4, 33, 1989.CrossRef
14.
Zurück zum Zitat Burns, S. J., Goyal, A. and Funkenbusch, P. D., Crystallographic Thermal Expansion and Elasticity across the Superconducting Transition in YBa 2 Cu 3 O 7-δ , Phys. Rev. B, 39, 11457, 1989.CrossRef Burns, S. J., Goyal, A. and Funkenbusch, P. D., Crystallographic Thermal Expansion and Elasticity across the Superconducting Transition in YBa 2 Cu 3 O 7-δ , Phys. Rev. B, 39, 11457, 1989.CrossRef
17.
Zurück zum Zitat Mitra, S., Developments in Geochemistry, High-Pressure Geochemistry and Mineral Physics, Elsevier B.V., Amsterdam, (2004). Mitra, S., Developments in Geochemistry, High-Pressure Geochemistry and Mineral Physics, Elsevier B.V., Amsterdam, (2004).
18.
Zurück zum Zitat Anderson, O. L., Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press, Oxford (1995). Anderson, O. L., Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press, Oxford (1995).
20.
Zurück zum Zitat Mao, H. K. and R. J. Hemley, The high-pressure dimension in earth and planetary science, Proc. Nat. Acad. Sci., 104, 9114-9115 (2007).CrossRef Mao, H. K. and R. J. Hemley, The high-pressure dimension in earth and planetary science, Proc. Nat. Acad. Sci., 104, 9114-9115 (2007).CrossRef
21.
Zurück zum Zitat Gerya T.V., Podlesskii K. K., Perchuk, and Maresch, W. V., Phys. Chem. Minerals, 31, 429-455, (2004).CrossRef Gerya T.V., Podlesskii K. K., Perchuk, and Maresch, W. V., Phys. Chem. Minerals, 31, 429-455, (2004).CrossRef
22.
Zurück zum Zitat Gerya, T.V., Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge , pp 25-35, 2009.CrossRef Gerya, T.V., Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge , pp 25-35, 2009.CrossRef
23.
Zurück zum Zitat Birch, F., Elasticity and Constitution of the Earth’s Interior, J. Geophys. Res., 57, 227-286, 1957.CrossRef Birch, F., Elasticity and Constitution of the Earth’s Interior, J. Geophys. Res., 57, 227-286, 1957.CrossRef
24.
Zurück zum Zitat Anderson, O. L. and Zou, K., Thermodynamic functions and properties of MgO at high compression and high temperature, J. Phys. Chem. Ref Data, 19, 69-83, (1990).CrossRef Anderson, O. L. and Zou, K., Thermodynamic functions and properties of MgO at high compression and high temperature, J. Phys. Chem. Ref Data, 19, 69-83, (1990).CrossRef
25.
Zurück zum Zitat Suzuki, I., Thermal expansion of Periclase and olivine, and their anharmonic properties, J. Phys. Earth, 23, 145-159, (1975).CrossRef Suzuki, I., Thermal expansion of Periclase and olivine, and their anharmonic properties, J. Phys. Earth, 23, 145-159, (1975).CrossRef
26.
Zurück zum Zitat Meng, Y., Fei, T., Weidner, D. J., Gwanmesia, G. D. and Hu J. J. Phys. Chem. Miner., 21, 407-412 (1994). Meng, Y., Fei, T., Weidner, D. J., Gwanmesia, G. D. and Hu J. J. Phys. Chem. Miner., 21, 407-412 (1994).
27.
Zurück zum Zitat Jacobs, M. H. G. and Oonk, H. A. J.: The Gibbs energy formulation of the α, β and γ forms of Mg2SiO4 using Grover, Getting and Kennedy’s empirical relation between volume and bulk modulus, Phys. Chem. Minerals, 28, 572-585, (2001).CrossRef Jacobs, M. H. G. and Oonk, H. A. J.: The Gibbs energy formulation of the α, β and γ forms of Mg2SiO4 using Grover, Getting and Kennedy’s empirical relation between volume and bulk modulus, Phys. Chem. Minerals, 28, 572-585, (2001).CrossRef
Metadaten
Titel
Thermodynamic Predictions of Thermal Expansivity and Elastic Compliances at High Temperatures and Pressures Applied to Perovskite Crystals
verfasst von
S. J. Burns
Publikationsdatum
20.01.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2016
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3317-2

Weitere Artikel der Ausgabe 12/2016

Metallurgical and Materials Transactions A 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.