Skip to main content

2012 | OriginalPaper | Buchkapitel

Thermodynamic Properties for Applications in Chemical Industry via Classical Force Fields

verfasst von : Gabriela Guevara-Carrion, Hans Hasse, Jadran Vrabec

Erschienen in: Multiscale Molecular Methods in Applied Chemistry

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G E models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor–liquid equilibrium properties of binary mixtures containing CO2 is shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hendriks E, Kontogeorgis GM, Dohrn R et al (2010) Industrial requirements for thermodynamics and transport properties. Ind Eng Chem Res 49:11131–11141 Hendriks E, Kontogeorgis GM, Dohrn R et al (2010) Industrial requirements for thermodynamics and transport properties. Ind Eng Chem Res 49:11131–11141
2.
Zurück zum Zitat Dohrn R, Pfohl O (2002) Thermo-physical properties – industrial directions. Fluid Phase Equilib 194–197:15–29 Dohrn R, Pfohl O (2002) Thermo-physical properties – industrial directions. Fluid Phase Equilib 194–197:15–29
3.
Zurück zum Zitat Gupta S, Olson JD (2003) Industrial needs in physical properties. Ind Eng Chem Res 42:6359–6374 Gupta S, Olson JD (2003) Industrial needs in physical properties. Ind Eng Chem Res 42:6359–6374
4.
Zurück zum Zitat Rhodes CL (1996) The process simulation revolution: thermophysical property needs and concerns. J Chem Eng Data 41:947–950 Rhodes CL (1996) The process simulation revolution: thermophysical property needs and concerns. J Chem Eng Data 41:947–950
5.
Zurück zum Zitat Sandler SI (1994) Thermophysical properties: what have we learned recently, and what do we still need to know? Int J Thermophys 15:1013–1035 Sandler SI (1994) Thermophysical properties: what have we learned recently, and what do we still need to know? Int J Thermophys 15:1013–1035
6.
Zurück zum Zitat Zeck S, Wolf D (1993) Requirements of thermodynamic data in the chemical industry. Fluid Phase Equilib 82:27–38 Zeck S, Wolf D (1993) Requirements of thermodynamic data in the chemical industry. Fluid Phase Equilib 82:27–38
7.
Zurück zum Zitat Poling BE, Prausnitz JM, O’Connell JP (2000) The properties of gases and liquids, 5th edn. McGraw Hill, New York Poling BE, Prausnitz JM, O’Connell JP (2000) The properties of gases and liquids, 5th edn. McGraw Hill, New York
8.
Zurück zum Zitat Gubbins KE, Quirke N (1996) Introduction to molecular simulation and industrial applications: methods, examples and prospects. In: Gubbins KE, Quirke N (eds) Molecular simulations and industrial applications. Gordon and Breach Science Publishers, Amsterdam Gubbins KE, Quirke N (1996) Introduction to molecular simulation and industrial applications: methods, examples and prospects. In: Gubbins KE, Quirke N (eds) Molecular simulations and industrial applications. Gordon and Breach Science Publishers, Amsterdam
9.
Zurück zum Zitat Maginn EJ, Elliot JR (2010) Historical perspective and current outlook for molecular dynamics as a chemical engineering tool. Ind Eng Chem Res 49:3059–3078 Maginn EJ, Elliot JR (2010) Historical perspective and current outlook for molecular dynamics as a chemical engineering tool. Ind Eng Chem Res 49:3059–3078
10.
Zurück zum Zitat Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. Proc Natl Acad Sci USA 102:6648–6653 Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. Proc Natl Acad Sci USA 102:6648–6653
11.
Zurück zum Zitat Allen MP, Tildesley DJ (1997) Computer simulation of liquids. Clarendon Press, Oxford Allen MP, Tildesley DJ (1997) Computer simulation of liquids. Clarendon Press, Oxford
12.
Zurück zum Zitat Burkert U, Allinger NL (1982) Molecular mechanics, ACS monograph 177. American Chemical Society, Washington, DC Burkert U, Allinger NL (1982) Molecular mechanics, ACS monograph 177. American Chemical Society, Washington, DC
13.
Zurück zum Zitat Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford
14.
Zurück zum Zitat Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Ann Phys 11:657–697 Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Ann Phys 11:657–697
15.
Zurück zum Zitat Horsch M, Vrabec J, Hasse H (2008) Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. Phys Rev E 78:011603 Horsch M, Vrabec J, Hasse H (2008) Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. Phys Rev E 78:011603
16.
Zurück zum Zitat Horsch M, Vrabec J (2009) Grand canonical steady-state simulation of nucleation. J Chem Phys 131:184104 Horsch M, Vrabec J (2009) Grand canonical steady-state simulation of nucleation. J Chem Phys 131:184104
17.
Zurück zum Zitat Kihara T (1951) The second virial coefficient of non-spherical molecules. J Phys Soc Jpn 6:289–296 Kihara T (1951) The second virial coefficient of non-spherical molecules. J Phys Soc Jpn 6:289–296
18.
Zurück zum Zitat Errington JR, Panagiotopoulos AZ (1999) A new intermolecular potential model for the n-alkane homologous series. J Phys Chem B 103:6314–6322 Errington JR, Panagiotopoulos AZ (1999) A new intermolecular potential model for the n-alkane homologous series. J Phys Chem B 103:6314–6322
19.
Zurück zum Zitat Leach AR (2001) Molecular modelling principles and applications, 2nd edn. Pearson Education, Edinburgh Leach AR (2001) Molecular modelling principles and applications, 2nd edn. Pearson Education, Edinburgh
20.
Zurück zum Zitat Cabaleiro-Lago EM, Rios MA (1997) A potential function for intermolecular interaction in the acetonitrile dimer constructed from ab initio data. J Phys Chem A 101:8327–8334 Cabaleiro-Lago EM, Rios MA (1997) A potential function for intermolecular interaction in the acetonitrile dimer constructed from ab initio data. J Phys Chem A 101:8327–8334
21.
Zurück zum Zitat Eggenberger R, Gerber S, Huber H et al (1994) A new ab initio potential for the neon dimer and its application in molecular dynamics simulations of the condensed phase. Mol Phys 82:689–699 Eggenberger R, Gerber S, Huber H et al (1994) A new ab initio potential for the neon dimer and its application in molecular dynamics simulations of the condensed phase. Mol Phys 82:689–699
22.
Zurück zum Zitat Grochola G, Russo S, Snook I (1998) An ab initio pair potential for Ne2 and the equilibrium properties of neon. Mol Phys 95:471–475 Grochola G, Russo S, Snook I (1998) An ab initio pair potential for Ne2 and the equilibrium properties of neon. Mol Phys 95:471–475
23.
Zurück zum Zitat Hellmann R, Bich E, Vogel E (2007) Ab initio potential energy curve for the helium atom pair and thermophysical properties of dilute helium gas. I. Helium-helium interatomic potential. Mol Phys 105:3013–3023 Hellmann R, Bich E, Vogel E (2007) Ab initio potential energy curve for the helium atom pair and thermophysical properties of dilute helium gas. I. Helium-helium interatomic potential. Mol Phys 105:3013–3023
24.
Zurück zum Zitat Hloucha M, Sum AK, Sandler SI (2000) Computer simulation of acetonitrile and methanol with ab initio-based pair potentials. J Chem Phys 113:5401–5406 Hloucha M, Sum AK, Sandler SI (2000) Computer simulation of acetonitrile and methanol with ab initio-based pair potentials. J Chem Phys 113:5401–5406
25.
Zurück zum Zitat Tang KT, Toennies JP (1980) An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J Chem Phys 80:3726–3741 Tang KT, Toennies JP (1980) An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J Chem Phys 80:3726–3741
26.
Zurück zum Zitat Al-Matar AK, Rockstraw D (2004) A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J Comput Chem 25:660–668 Al-Matar AK, Rockstraw D (2004) A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J Comput Chem 25:660–668
27.
Zurück zum Zitat Fender BEF, Halsey GD (1962) Second virial coefficients of argon, krypton, and argon-krypton mixtures at low temperatures. J Chem Phys 36:1881–1888 Fender BEF, Halsey GD (1962) Second virial coefficients of argon, krypton, and argon-krypton mixtures at low temperatures. J Chem Phys 36:1881–1888
28.
Zurück zum Zitat Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114:7827–7843 Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114:7827–7843
29.
Zurück zum Zitat Kong CL (1973) Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J Chem Phys 59:2464–2467 Kong CL (1973) Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J Chem Phys 59:2464–2467
30.
Zurück zum Zitat Sikora PT (1970) Combining rules for spherically symmetric intermolecular potentials. J Phys B 3:1475–1482 Sikora PT (1970) Combining rules for spherically symmetric intermolecular potentials. J Phys B 3:1475–1482
31.
Zurück zum Zitat Waldman M, Hagler AT (1993) New combining rules for rare-gas van der Waals parameters. J Comput Chem 14:1077–1084 Waldman M, Hagler AT (1993) New combining rules for rare-gas van der Waals parameters. J Comput Chem 14:1077–1084
32.
Zurück zum Zitat Peña MD, Pando C, Renuncio JAR (1982) Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy. J Chem Phys 76:325–332 Peña MD, Pando C, Renuncio JAR (1982) Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy. J Chem Phys 76:325–332
33.
Zurück zum Zitat Peña MD, Pando C, Renuncio JAR (1982) Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions. J Chem Phys 76:333–339 Peña MD, Pando C, Renuncio JAR (1982) Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions. J Chem Phys 76:333–339
34.
Zurück zum Zitat Schnabel T, Vrabec J, Hasse H (2007) Unlike Lennard-Jones parameters for vapor-liquid equilibria. J Mol Liq 135:170–178 Schnabel T, Vrabec J, Hasse H (2007) Unlike Lennard-Jones parameters for vapor-liquid equilibria. J Mol Liq 135:170–178
35.
Zurück zum Zitat Lorentz HA (1881) Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 12:127–136 Lorentz HA (1881) Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 12:127–136
36.
Zurück zum Zitat Berthelot D (1889) Sur le Mélange des Gaz. C R Acad Sci 126:1703–1706 Berthelot D (1889) Sur le Mélange des Gaz. C R Acad Sci 126:1703–1706
37.
Zurück zum Zitat Delhommelle J, Millié P (2001) Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol Phys 99:619–625 Delhommelle J, Millié P (2001) Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol Phys 99:619–625
38.
Zurück zum Zitat Ungerer P, Wender A, Demoulin G et al (2004) Application of Gibbs ensemble and NPT Monte Carlo simulation to the development of improved processes for H2S-rich gases. Mol Simul 30:631–648 Ungerer P, Wender A, Demoulin G et al (2004) Application of Gibbs ensemble and NPT Monte Carlo simulation to the development of improved processes for H2S-rich gases. Mol Simul 30:631–648
39.
Zurück zum Zitat Huang YL, Miroshnichenko S, Hasse H et al (2009) Henry’s law constant from molecular simulation: a systematic study of 95 systems. Int J Thermophys 30:1791–1810 Huang YL, Miroshnichenko S, Hasse H et al (2009) Henry’s law constant from molecular simulation: a systematic study of 95 systems. Int J Thermophys 30:1791–1810
40.
Zurück zum Zitat Huang YL, Vrabec J, Hasse H (2009) Prediction of ternary vapor-liquid equilibria for 33 systems by molecular simulation. Fluid Phase Equilib 287:62–69 Huang YL, Vrabec J, Hasse H (2009) Prediction of ternary vapor-liquid equilibria for 33 systems by molecular simulation. Fluid Phase Equilib 287:62–69
41.
Zurück zum Zitat Vrabec J, Huang YL, Hasse H (2009) Molecular models for 267 binary mixtures validated by vapor-liquid equilibria: a systematic approach. Fluid Phase Equilib 279:120–135 Vrabec J, Huang YL, Hasse H (2009) Molecular models for 267 binary mixtures validated by vapor-liquid equilibria: a systematic approach. Fluid Phase Equilib 279:120–135
42.
Zurück zum Zitat Stone AJ (2008) Intermolecular potentials. Science 321:787–789 Stone AJ (2008) Intermolecular potentials. Science 321:787–789
43.
Zurück zum Zitat Murthy CS, Singer K, Klein ML et al (1983) Electrostatic interactions in molecular crystals. Lattice dynamics of solid nitrogen and carbon dioxide. Mol Phys 50:531–541 Murthy CS, Singer K, Klein ML et al (1983) Electrostatic interactions in molecular crystals. Lattice dynamics of solid nitrogen and carbon dioxide. Mol Phys 50:531–541
44.
Zurück zum Zitat Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York
45.
Zurück zum Zitat Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11:236–242 Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11:236–242
46.
Zurück zum Zitat Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. In: Lipowitz DB, Boyd DB (eds) Review in computational chemistry. Wiley-VCH, New York Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. In: Lipowitz DB, Boyd DB (eds) Review in computational chemistry. Wiley-VCH, New York
47.
Zurück zum Zitat Yu H, van Gunsteren WF (2005) Accounting for polarization in molecular simulation. Comput Phys Commun 172:69–85 Yu H, van Gunsteren WF (2005) Accounting for polarization in molecular simulation. Comput Phys Commun 172:69–85
48.
Zurück zum Zitat Dang LX, Rice JE, Caldwell J et al (1991) Ion solvation in polarizable water: molecular dynamics simulations. J Am Chem Soc 113:2481–2486 Dang LX, Rice JE, Caldwell J et al (1991) Ion solvation in polarizable water: molecular dynamics simulations. J Am Chem Soc 113:2481–2486
49.
Zurück zum Zitat Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141–6157 Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141–6157
50.
Zurück zum Zitat Rigby M, Smith EB, Wakeham WA et al (1986) The forces between molecules. Clarendon Press, Oxford Rigby M, Smith EB, Wakeham WA et al (1986) The forces between molecules. Clarendon Press, Oxford
51.
Zurück zum Zitat Simons G, Parr RG, Finlan JM (1973) New alternative to the Dunham potential for diatomic molecules. J Chem Phys 59:3229–3234 Simons G, Parr RG, Finlan JM (1973) New alternative to the Dunham potential for diatomic molecules. J Chem Phys 59:3229–3234
52.
Zurück zum Zitat Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34:57–64 Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34:57–64
53.
Zurück zum Zitat Hünenberger PH, van Gunsteren WF (1997) Empirical classical interaction functions for molecular simulation. In: van Gunsteren WF, Weiner PK, Wilkinson AJ (eds) Computer simulation of biomolecular systems: theoretical and experimental applications. Kluwer Academic, Dordrecht Hünenberger PH, van Gunsteren WF (1997) Empirical classical interaction functions for molecular simulation. In: van Gunsteren WF, Weiner PK, Wilkinson AJ (eds) Computer simulation of biomolecular systems: theoretical and experimental applications. Kluwer Academic, Dordrecht
54.
Zurück zum Zitat van der Ploeg P, Berendsen HJC (1982) Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276 van der Ploeg P, Berendsen HJC (1982) Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276
55.
Zurück zum Zitat Ryckaert JP, Bellemans A (1975) Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett 30:123–125 Ryckaert JP, Bellemans A (1975) Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett 30:123–125
56.
Zurück zum Zitat Economou IG (2004) Molecular simulation of phase equilibria for industrial applications. In: Kontogeorgis GM, Gani R (eds) Computer aided property estimation for process and product design. Elsevier, Amsterdam Economou IG (2004) Molecular simulation of phase equilibria for industrial applications. In: Kontogeorgis GM, Gani R (eds) Computer aided property estimation for process and product design. Elsevier, Amsterdam
57.
Zurück zum Zitat Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236 Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236
58.
Zurück zum Zitat Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104 Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104
59.
Zurück zum Zitat Bourasseau E, Haboudou M, Boutin A et al (2003) New optimization method for intermolecular potentials: optimization of a new anisotropic united atoms potential for olefins. prediction of equilibrium properties. J Chem Phys 118:3020–3034 Bourasseau E, Haboudou M, Boutin A et al (2003) New optimization method for intermolecular potentials: optimization of a new anisotropic united atoms potential for olefins. prediction of equilibrium properties. J Chem Phys 118:3020–3034
60.
Zurück zum Zitat Faller R, Schmitz H, Biermann O et al (1999) Automatic parameterization of force fields for liquids by simplex optimization. J Comput Chem 20:1009–1017 Faller R, Schmitz H, Biermann O et al (1999) Automatic parameterization of force fields for liquids by simplex optimization. J Comput Chem 20:1009–1017
61.
Zurück zum Zitat Hülsmann M, Köddermann T, Vrabec J et al (2010) GROW: a gradient-based optimization workflow for the automated development of molecular models. Comput Phys Commun 181:499–513 Hülsmann M, Köddermann T, Vrabec J et al (2010) GROW: a gradient-based optimization workflow for the automated development of molecular models. Comput Phys Commun 181:499–513
62.
Zurück zum Zitat Njo SL, van Gunsteren WF, Müller-Plathe F (1995) Determination of force field parameters for molecular simulation by molecular simulation: an application of the weak-coupling method. J Chem Phys 102:6199–6207 Njo SL, van Gunsteren WF, Müller-Plathe F (1995) Determination of force field parameters for molecular simulation by molecular simulation: an application of the weak-coupling method. J Chem Phys 102:6199–6207
63.
Zurück zum Zitat Waldher B, Kuta J, Chen S et al (2010) ForceFit: a code to fit classical force fields to quantum mechanical potential energy surfaces. J Comput Chem 31:2307–2316 Waldher B, Kuta J, Chen S et al (2010) ForceFit: a code to fit classical force fields to quantum mechanical potential energy surfaces. J Comput Chem 31:2307–2316
64.
Zurück zum Zitat Wang J, Kollman PA (2001) Automatic parameterization of force field by systematic search and genetic algorithms. J Comput Chem 22:1219–1228 Wang J, Kollman PA (2001) Automatic parameterization of force field by systematic search and genetic algorithms. J Comput Chem 22:1219–1228
65.
Zurück zum Zitat Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174 Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174
66.
Zurück zum Zitat Cornell WD, Cieplak P, Bayly CI et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197 Cornell WD, Cieplak P, Bayly CI et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197
67.
Zurück zum Zitat Kaminski G, Friesner RA, Tirado-Rives J et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487 Kaminski G, Friesner RA, Tirado-Rives J et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487
68.
Zurück zum Zitat Pérez-Pellitero J, Bourasseau E, Demachy I et al (2008) Anisotropic united-atoms (AUA) potential for alcohols. J Phys Chem B 112:9853–9863 Pérez-Pellitero J, Bourasseau E, Demachy I et al (2008) Anisotropic united-atoms (AUA) potential for alcohols. J Phys Chem B 112:9853–9863
69.
Zurück zum Zitat Sandler SI, Castier M (2007) Computational quantum mechanics: an underutilized tool in thermodynamics. Pure Appl Chem 79:1345–1359 Sandler SI, Castier M (2007) Computational quantum mechanics: an underutilized tool in thermodynamics. Pure Appl Chem 79:1345–1359
70.
Zurück zum Zitat Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications. overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364 Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications. overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364
71.
Zurück zum Zitat Löwdin P (1970) On the nonorthogonality problem. Adv Quantum Chem 5:185–199 Löwdin P (1970) On the nonorthogonality problem. Adv Quantum Chem 5:185–199
72.
Zurück zum Zitat Mulliken RS (1962) Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAOMO population analysis. J Chem Phys 36:3428–3440 Mulliken RS (1962) Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAOMO population analysis. J Chem Phys 36:3428–3440
73.
Zurück zum Zitat Li J, Zhu T, Cramer CT et al (1998) New class IV charge model for extracting accurate partial charges from wave functions. J Phys Chem A 102:1820–1831 Li J, Zhu T, Cramer CT et al (1998) New class IV charge model for extracting accurate partial charges from wave functions. J Phys Chem A 102:1820–1831
74.
Zurück zum Zitat Reed AE, Weinstock RB, Weinhold FA (1985) Natural population analysis. J Chem Phys 83:735–747 Reed AE, Weinstock RB, Weinhold FA (1985) Natural population analysis. J Chem Phys 83:735–747
75.
Zurück zum Zitat Bader RFW (1985) Atoms in molecules. A quantum theory. Clarendon Press, Oxford Bader RFW (1985) Atoms in molecules. A quantum theory. Clarendon Press, Oxford
76.
Zurück zum Zitat Wiberg KB, Rablen PR (1993) Comparison of atomic charges derived via different procedures. J Comput Chem 14:1504–1518 Wiberg KB, Rablen PR (1993) Comparison of atomic charges derived via different procedures. J Comput Chem 14:1504–1518
77.
Zurück zum Zitat Mobley DL, Dumont E, Chodera JD (2007) Comparison of charge models for fixed-charge force fields: small molecule hydration free energies in explicit solvent. J Phys Chem B 111:2242–2254 Mobley DL, Dumont E, Chodera JD (2007) Comparison of charge models for fixed-charge force fields: small molecule hydration free energies in explicit solvent. J Phys Chem B 111:2242–2254
78.
Zurück zum Zitat Chirlian LE, Francl MM (1987) Atomic charges derived from electrostatic potentials: a detailed study. J Comput Chem 8:894–905 Chirlian LE, Francl MM (1987) Atomic charges derived from electrostatic potentials: a detailed study. J Comput Chem 8:894–905
79.
Zurück zum Zitat Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373 Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373
80.
Zurück zum Zitat Bayly CI, Cieplak P, Cornell W et al (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280 Bayly CI, Cieplak P, Cornell W et al (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280
81.
Zurück zum Zitat Stouch TR, Williams DE (1992) Conformational dependence of electrostatic potential derived charges of a lipid headgroup: glycerylphosphorylcholine. J Comput Chem 13:622–632 Stouch TR, Williams DE (1992) Conformational dependence of electrostatic potential derived charges of a lipid headgroup: glycerylphosphorylcholine. J Comput Chem 13:622–632
82.
Zurück zum Zitat Sigfridsson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comput Chem 19:377–395 Sigfridsson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comput Chem 19:377–395
83.
Zurück zum Zitat Anisimov V, Vorobyov IV, Roux B et al (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. J Chem Theory Comput 3:1927–1946 Anisimov V, Vorobyov IV, Roux B et al (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. J Chem Theory Comput 3:1927–1946
84.
Zurück zum Zitat Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1:1128–1132 Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1:1128–1132
85.
Zurück zum Zitat Joubert L, Popelier PLA (2002) Improved convergence of the atoms in molecules multipole expansion of electrostatic interaction. Mol Phys 100:3357–3365 Joubert L, Popelier PLA (2002) Improved convergence of the atoms in molecules multipole expansion of electrostatic interaction. Mol Phys 100:3357–3365
86.
Zurück zum Zitat Eckl B, Vrabec J, Hasse H (2008) Set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data. J Phys Chem B 112:12710–12721 Eckl B, Vrabec J, Hasse H (2008) Set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data. J Phys Chem B 112:12710–12721
87.
Zurück zum Zitat Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvatation models. Chem Rev 105:2999–3093 Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvatation models. Chem Rev 105:2999–3093
88.
Zurück zum Zitat Wong MA, Frisch MJ, Wiberg KB (1991) Solvent effects 1. The mediation of electrostatic effects by solvents. J Am Chem Soc 113:4776–4782 Wong MA, Frisch MJ, Wiberg KB (1991) Solvent effects 1. The mediation of electrostatic effects by solvents. J Am Chem Soc 113:4776–4782
89.
Zurück zum Zitat Wong MA, Frisch MJ, Wiberg KB (1992) Solvent effects 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid. J Am Chem Soc 114:523–529 Wong MA, Frisch MJ, Wiberg KB (1992) Solvent effects 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid. J Am Chem Soc 114:523–529
90.
Zurück zum Zitat Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235 Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235
91.
Zurück zum Zitat MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616 MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616
92.
Zurück zum Zitat Kony D, Damm W, Stoll S et al (2002) An improved OPLS-AA force field for carbohydrates. J Comput Chem 23:1416–1429 Kony D, Damm W, Stoll S et al (2002) An improved OPLS-AA force field for carbohydrates. J Comput Chem 23:1416–1429
93.
Zurück zum Zitat Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley, New York Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley, New York
94.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789 Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789
95.
Zurück zum Zitat Hatcher A, Guvench O, MacKerell AD (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates and inositol. J Chem Theory Comput 5:1315–1327 Hatcher A, Guvench O, MacKerell AD (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates and inositol. J Chem Theory Comput 5:1315–1327
96.
Zurück zum Zitat Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106:6638–6646 Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106:6638–6646
97.
Zurück zum Zitat Eckl B, Vrabec J, Hasse H (2008) An optimized molecular model for ammonia. Mol Phys 106:1039–1046 Eckl B, Vrabec J, Hasse H (2008) An optimized molecular model for ammonia. Mol Phys 106:1039–1046
98.
Zurück zum Zitat Schnabel T, Srivastava A, Vrabec J et al (2008) Hydrogen bonding of methanol in super-critical CO2: comparison between 1 H-NMR spectroscopic data and molecular simulation results. J Phys Chem B 111:9871–9878 Schnabel T, Srivastava A, Vrabec J et al (2008) Hydrogen bonding of methanol in super-critical CO2: comparison between 1 H-NMR spectroscopic data and molecular simulation results. J Phys Chem B 111:9871–9878
99.
Zurück zum Zitat Schnabel T, Vrabec J, Hasse H (2008) Molecular simulation study of hydrogen bonding mixtures and new molecular models for mono- and dimethylamine. Fluid Phase Equilib 263:144–159 Schnabel T, Vrabec J, Hasse H (2008) Molecular simulation study of hydrogen bonding mixtures and new molecular models for mono- and dimethylamine. Fluid Phase Equilib 263:144–159
100.
Zurück zum Zitat Nath SK, Escobedo FA, de Pablo JJ (1998) On the simulation of vapor-liquid equilibria for alkanes. J Chem Phys 108:9905–9911 Nath SK, Escobedo FA, de Pablo JJ (1998) On the simulation of vapor-liquid equilibria for alkanes. J Chem Phys 108:9905–9911
101.
Zurück zum Zitat Poncela A, Rubio AM, Freire JJ (1997) Determination of the potential parameters of a site model from calculations of second virial coefficients of linear and branched alkanes. Mol Phys 91:189–201 Poncela A, Rubio AM, Freire JJ (1997) Determination of the potential parameters of a site model from calculations of second virial coefficients of linear and branched alkanes. Mol Phys 91:189–201
102.
Zurück zum Zitat Vrabec J, Stoll J, Hasse H (2001) A set of molecular models for symmetric quadrupolar fluids. J Phys Chem B 105:12126–12133 Vrabec J, Stoll J, Hasse H (2001) A set of molecular models for symmetric quadrupolar fluids. J Phys Chem B 105:12126–12133
103.
Zurück zum Zitat Kaminski G, Duffy EM, Matsui T et al (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98:13077–13082 Kaminski G, Duffy EM, Matsui T et al (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98:13077–13082
104.
Zurück zum Zitat Fiorini M, Burger K, Mark A et al (2000) A new 2,2,2-trifluoroethanol model for molecular dynamics simulations. J Phys Chem B 104:12347–12354 Fiorini M, Burger K, Mark A et al (2000) A new 2,2,2-trifluoroethanol model for molecular dynamics simulations. J Phys Chem B 104:12347–12354
105.
Zurück zum Zitat Micaelo NM, Baptista AM, Soares CM (2006) Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field. J Phys Chem B 110:14444–14451 Micaelo NM, Baptista AM, Soares CM (2006) Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field. J Phys Chem B 110:14444–14451
106.
Zurück zum Zitat Gordon P (2006) Development of intermolecular potentials for predicting transport properties of hydrocarbons. J Chem Phys 125:014504 Gordon P (2006) Development of intermolecular potentials for predicting transport properties of hydrocarbons. J Chem Phys 125:014504
107.
Zurück zum Zitat Nieto-Draghi C, Ungerer P, Rousseau B (2006) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes: improvement of transport properties. J Chem Phys 125:044517 Nieto-Draghi C, Ungerer P, Rousseau B (2006) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes: improvement of transport properties. J Chem Phys 125:044517
108.
Zurück zum Zitat Impey RW, Klein ML (1984) A simple intermolecular potential for liquid ammonia. Chem Phys Lett 104:579–582 Impey RW, Klein ML (1984) A simple intermolecular potential for liquid ammonia. Chem Phys Lett 104:579–582
109.
Zurück zum Zitat Stoll J, Vrabec J, Hasse H (2003) A set of molecular models for carbon monoxide and halogenated hydrocarbons. J Chem Phys 119:11396–11407 Stoll J, Vrabec J, Hasse H (2003) A set of molecular models for carbon monoxide and halogenated hydrocarbons. J Chem Phys 119:11396–11407
110.
Zurück zum Zitat Jorgensen WL, Swenson CJ (1985) Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107:569–578 Jorgensen WL, Swenson CJ (1985) Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107:569–578
111.
Zurück zum Zitat Jorgensen WL (1986) Optimized intermolecular potential functions for liquid alcohols. J Phys Chem 90:1276–1284 Jorgensen WL (1986) Optimized intermolecular potential functions for liquid alcohols. J Phys Chem 90:1276–1284
112.
Zurück zum Zitat Jorgensen WL, Tirado-Rives J (1988) The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666 Jorgensen WL, Tirado-Rives J (1988) The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666
113.
Zurück zum Zitat Chen B, Siepmann JI (1999) Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of n-alkanes. J Phys Chem B 103:5370–5379 Chen B, Siepmann JI (1999) Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of n-alkanes. J Phys Chem B 103:5370–5379
114.
Zurück zum Zitat Chen B, Potoff JJ, Siepmann JI (2001) Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B 105:3093–3104 Chen B, Potoff JJ, Siepmann JI (2001) Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B 105:3093–3104
115.
Zurück zum Zitat Lubna N, Kamath G, Potoff JJ et al (2005) Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene. J Phys Chem B 109:24100–24107 Lubna N, Kamath G, Potoff JJ et al (2005) Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene. J Phys Chem B 109:24100–24107
116.
Zurück zum Zitat Maerzke KA, Schultz NE, Ross RB et al (2009) TraPPE-UA force field for acrylates and Monte Carlo simulations for their mixtures with alkanes and alcohols. J Phys Chem B 113:6415–6425 Maerzke KA, Schultz NE, Ross RB et al (2009) TraPPE-UA force field for acrylates and Monte Carlo simulations for their mixtures with alkanes and alcohols. J Phys Chem B 113:6415–6425
117.
Zurück zum Zitat Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102:2569–2577 Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102:2569–2577
118.
Zurück zum Zitat Martin MG, Siepmann JI (1999) Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J Phys Chem B 103:4508–4517 Martin MG, Siepmann JI (1999) Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J Phys Chem B 103:4508–4517
119.
Zurück zum Zitat Rai N, Siepmann JI (2007) Transferable potentials for phase equilibria. 9. Explicit-hydrogen description of benzene and 5-membered and 6-membered heterocyclic aromatic compounds. J Phys Chem B 111:10790–10799 Rai N, Siepmann JI (2007) Transferable potentials for phase equilibria. 9. Explicit-hydrogen description of benzene and 5-membered and 6-membered heterocyclic aromatic compounds. J Phys Chem B 111:10790–10799
120.
Zurück zum Zitat Stubbs JM, Potoff JJ, Siepmann JI (2004) Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones and aldehydes. J Phys Chem B 108:17596–17605 Stubbs JM, Potoff JJ, Siepmann JI (2004) Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones and aldehydes. J Phys Chem B 108:17596–17605
121.
Zurück zum Zitat Wick CD, Martin MG, Siepmann JI (2000) Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J Phys Chem B 104:8008–8016 Wick CD, Martin MG, Siepmann JI (2000) Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J Phys Chem B 104:8008–8016
122.
Zurück zum Zitat Wick CD, Stubbs JM, Rai N et al (2005) Transferable potentials for phase equilibria. 7. United-atom description for nitrogen, amines, amides, nitriles, pyridine and pyrimidine. J Phys Chem B 109:18974–18982 Wick CD, Stubbs JM, Rai N et al (2005) Transferable potentials for phase equilibria. 7. United-atom description for nitrogen, amines, amides, nitriles, pyridine and pyrimidine. J Phys Chem B 109:18974–18982
123.
Zurück zum Zitat Boutard Y, Ungerer P, Teuler JM et al (2005) Extension of the anisotropic united atoms intermolecular potential to amines, amides and alkanols. Application to the problems of the 2004 Fluid Simulation Challenge. Fluid Phase Equilib 236:25–41 Boutard Y, Ungerer P, Teuler JM et al (2005) Extension of the anisotropic united atoms intermolecular potential to amines, amides and alkanols. Application to the problems of the 2004 Fluid Simulation Challenge. Fluid Phase Equilib 236:25–41
124.
Zurück zum Zitat Contreras-Camacho RO, Ungerer P, Boutin A et al (2004) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. 1. Benzene. J Phys Chem B 108:14109–14114 Contreras-Camacho RO, Ungerer P, Boutin A et al (2004) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. 1. Benzene. J Phys Chem B 108:14109–14114
125.
Zurück zum Zitat Creton B, de Bruin T, Lachet V et al (2010) Extension of a charged anisotropic united atoms model to polycyclic aromatic compounds. J Phys Chem B 114:6522–6530 Creton B, de Bruin T, Lachet V et al (2010) Extension of a charged anisotropic united atoms model to polycyclic aromatic compounds. J Phys Chem B 114:6522–6530
126.
Zurück zum Zitat Delhommelle J, Tschirwitz C, Ungerer P et al (2000) Derivation of an optimized potential model for phase equilibria (OPPE) for sulfides and thiols. J Phys Chem B 104:4745–4753 Delhommelle J, Tschirwitz C, Ungerer P et al (2000) Derivation of an optimized potential model for phase equilibria (OPPE) for sulfides and thiols. J Phys Chem B 104:4745–4753
127.
Zurück zum Zitat Hadj-Kali MK, Gerbaud V, Joulia X et al (2008) Optimized intermolecular potential for nitriles based on anisotropic united atoms model. J Mol Model 14:571–580 Hadj-Kali MK, Gerbaud V, Joulia X et al (2008) Optimized intermolecular potential for nitriles based on anisotropic united atoms model. J Mol Model 14:571–580
128.
Zurück zum Zitat Kranias S, Pattou D, Lévy B (2003) An optimized potential for phase equilibria calculation for ketone and aldehyde molecular fluids. Phys Chem Chem Phys 5:4175–4179 Kranias S, Pattou D, Lévy B (2003) An optimized potential for phase equilibria calculation for ketone and aldehyde molecular fluids. Phys Chem Chem Phys 5:4175–4179
129.
Zurück zum Zitat Nieto-Draghi C, Bonnaud P, Ungerer P (2007) Anisotropic united atom model including the electrostatic interactions of methylbenzenes. I. Thermodynamic and structural properties. J Phys Chem C 111:15686–15699 Nieto-Draghi C, Bonnaud P, Ungerer P (2007) Anisotropic united atom model including the electrostatic interactions of methylbenzenes. I. Thermodynamic and structural properties. J Phys Chem C 111:15686–15699
130.
Zurück zum Zitat Ungerer P, le Beauvais C, Delhommelle J et al (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J Chem Phys 112:5499–5510 Ungerer P, le Beauvais C, Delhommelle J et al (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J Chem Phys 112:5499–5510
131.
Zurück zum Zitat Nath SK, de Pablo JJ (2000) Simulation of vapor-liquid equilibria for branched alkanes. Mol Phys 98:231–238 Nath SK, de Pablo JJ (2000) Simulation of vapor-liquid equilibria for branched alkanes. Mol Phys 98:231–238
132.
Zurück zum Zitat Nath SK, Banaszak BJ, de Pablo JJ (2001) A new united atom force field for α-olefins. J Chem Phys 114:3612–3616 Nath SK, Banaszak BJ, de Pablo JJ (2001) A new united atom force field for α-olefins. J Chem Phys 114:3612–3616
133.
Zurück zum Zitat Nath SK, Khare R (2001) New force field parameters for branched hydrocarbons. J Chem Phys 115:10837–10844 Nath SK, Khare R (2001) New force field parameters for branched hydrocarbons. J Chem Phys 115:10837–10844
134.
Zurück zum Zitat Errington JR, Panagiotopoulos AZ (1999) New intermolecular potential models for benzene and cyclohexane. J Chem Phys 111:9731–9738 Errington JR, Panagiotopoulos AZ (1999) New intermolecular potential models for benzene and cyclohexane. J Chem Phys 111:9731–9738
135.
Zurück zum Zitat Damm W, Frontera A, Tirado-Rives J et al (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18:1955–1970 Damm W, Frontera A, Tirado-Rives J et al (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18:1955–1970
136.
Zurück zum Zitat Jorgensen WL, McDonald NA (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J Mol Struct THEOCHEM 424:145–155 Jorgensen WL, McDonald NA (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J Mol Struct THEOCHEM 424:145–155
137.
Zurück zum Zitat Kahn K, Bruice T (2001) Parameterization of OPLS-AA force field for the conformational analysis of macrocyclic polyketides. J Comput Chem 23:977–996 Kahn K, Bruice T (2001) Parameterization of OPLS-AA force field for the conformational analysis of macrocyclic polyketides. J Comput Chem 23:977–996
138.
Zurück zum Zitat McDonald NA, Jorgensen WL (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B 102:8049–8059 McDonald NA, Jorgensen WL (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B 102:8049–8059
139.
Zurück zum Zitat Rizzo RC, Jorgensen WL (1999) OPLS all-atom model for amines: resolution of the amine hydration problem. J Am Chem Soc 121:4827–4836 Rizzo RC, Jorgensen WL (1999) OPLS all-atom model for amines: resolution of the amine hydration problem. J Am Chem Soc 121:4827–4836
140.
Zurück zum Zitat MacKerell AD, Wiorkiewicz-Kuczera J, Karplus M (1995) An all-atom empirical energy function for the simulation of nucleic acids. J Am Chem Soc 117:11946–11975 MacKerell AD, Wiorkiewicz-Kuczera J, Karplus M (1995) An all-atom empirical energy function for the simulation of nucleic acids. J Am Chem Soc 117:11946–11975
141.
Zurück zum Zitat Smit B, Karaborni S, Siepmann JI (1994) Computer simulations of vapor-liquid phase equilibria of n-alkanes. J Chem Phys 102:2126–2140 Smit B, Karaborni S, Siepmann JI (1994) Computer simulations of vapor-liquid phase equilibria of n-alkanes. J Chem Phys 102:2126–2140
142.
Zurück zum Zitat Toxvaerd S (1990) Molecular dynamics calculation of the equation of state of alkanes. J Chem Phys 93:4290–4296 Toxvaerd S (1990) Molecular dynamics calculation of the equation of state of alkanes. J Chem Phys 93:4290–4296
143.
Zurück zum Zitat Toxvaerd S (1997) Equation of state of alkanes II. J Chem Phys 107:5197–5204 Toxvaerd S (1997) Equation of state of alkanes II. J Chem Phys 107:5197–5204
144.
Zurück zum Zitat Ferrando N, Lachet V, Teuler JM et al (2009) Transferable force field for alcohols and polyalcohols. J Phys Chem B 113:5985–5995 Ferrando N, Lachet V, Teuler JM et al (2009) Transferable force field for alcohols and polyalcohols. J Phys Chem B 113:5985–5995
145.
Zurück zum Zitat Lévy B, Enescu M (1998) Theoretical study of methylene blue: a new method to determine partial atomic charges; investigation of the interaction with guanine. J Mol Struct Theochem 432:235–245 Lévy B, Enescu M (1998) Theoretical study of methylene blue: a new method to determine partial atomic charges; investigation of the interaction with guanine. J Mol Struct Theochem 432:235–245
146.
Zurück zum Zitat Glennon TM, Merz KM (1997) A carbohydrate force field for AMBER and its application to the study of saccharides to surface adsorption. J Mol Struct Theochem 395–396:157–171 Glennon TM, Merz KM (1997) A carbohydrate force field for AMBER and its application to the study of saccharides to surface adsorption. J Mol Struct Theochem 395–396:157–171
147.
Zurück zum Zitat Yang L, Tan C, Hsieh MJ et al (2006) New-generation amber united-atom force field. J Phys Chem B 110:13166–13176 Yang L, Tan C, Hsieh MJ et al (2006) New-generation amber united-atom force field. J Phys Chem B 110:13166–13176
148.
Zurück zum Zitat van Gunsteren WF, Billeter SR, Eising AA et al (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag, Zürich van Gunsteren WF, Billeter SR, Eising AA et al (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag, Zürich
149.
Zurück zum Zitat Oostenbrink C, Villa A, Mark AE (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676 Oostenbrink C, Villa A, Mark AE (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676
150.
Zurück zum Zitat Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218 Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218
151.
Zurück zum Zitat Engelsen SB, Fabricius J, Rasmussen K (1994) The consistent force field. 1. Methods and strategies for optimization of empirical potential energy functions. Acta Chem Scand Ser A 48:548–552 Engelsen SB, Fabricius J, Rasmussen K (1994) The consistent force field. 1. Methods and strategies for optimization of empirical potential energy functions. Acta Chem Scand Ser A 48:548–552
152.
Zurück zum Zitat Engelsen SB, Fabricius J, Rasmussen K (1994) The consistent force field. 2. An optimized set of potential energy functions for the alkanes. Acta Chem Scand Ser A 48:553–565 Engelsen SB, Fabricius J, Rasmussen K (1994) The consistent force field. 2. An optimized set of potential energy functions for the alkanes. Acta Chem Scand Ser A 48:553–565
153.
Zurück zum Zitat Jónsdóttir SO, Rasmussen K (2000) The consistent force field. Part 6: an optimized set of potential energy functions for primary amines. New J Chem 24:243–247 Jónsdóttir SO, Rasmussen K (2000) The consistent force field. Part 6: an optimized set of potential energy functions for primary amines. New J Chem 24:243–247
154.
Zurück zum Zitat Shirts MR, Pitera JW, Swope WC et al (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119:5740–5761 Shirts MR, Pitera JW, Swope WC et al (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119:5740–5761
155.
Zurück zum Zitat Guvench O, MacKerell AD (2008) Comparison of protein force fields for molecular dynamics simulations. In: Kukol A (ed) Molecular modeling of proteins. Humana Press, New York Guvench O, MacKerell AD (2008) Comparison of protein force fields for molecular dynamics simulations. In: Kukol A (ed) Molecular modeling of proteins. Humana Press, New York
156.
Zurück zum Zitat Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604 Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604
157.
Zurück zum Zitat Ponder JW, Case DA (2003) Force fields for protein simulations. Protein Simul 66:27–85 Ponder JW, Case DA (2003) Force fields for protein simulations. Protein Simul 66:27–85
158.
Zurück zum Zitat Price DJ, Brooks CL (2002) Modern protein force fields behave comparably in molecular dynamics simulations. J Comput Chem 23:1045–1057 Price DJ, Brooks CL (2002) Modern protein force fields behave comparably in molecular dynamics simulations. J Comput Chem 23:1045–1057
159.
Zurück zum Zitat Yoda T, Sugita Y, Okamoto Y (2004) Comparisons of force fields for proteins by generalized-ensemble simulations. Chem Phys Lett 386:460–467 Yoda T, Sugita Y, Okamoto Y (2004) Comparisons of force fields for proteins by generalized-ensemble simulations. Chem Phys Lett 386:460–467
160.
Zurück zum Zitat Hobza P, Hubálek F, Kabeláč M et al (1996) Ability of empirical potentials (AMBER, CHARMM, CVFF, OPLS, Poltev) and semi-empirical quantum chemical methods (AM1, MNDO/M, PM3) to describe H-bonding in DNA base pairs; comparison with ab initio results. Chem Phys Lett 257:31–35 Hobza P, Hubálek F, Kabeláč M et al (1996) Ability of empirical potentials (AMBER, CHARMM, CVFF, OPLS, Poltev) and semi-empirical quantum chemical methods (AM1, MNDO/M, PM3) to describe H-bonding in DNA base pairs; comparison with ab initio results. Chem Phys Lett 257:31–35
161.
Zurück zum Zitat Yeh IC, Hummer G (2002) Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. J Am Chem Soc 124:6563–6568 Yeh IC, Hummer G (2002) Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. J Am Chem Soc 124:6563–6568
162.
Zurück zum Zitat Stortz CA, Johnson GP, French AD et al (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228 Stortz CA, Johnson GP, French AD et al (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228
163.
Zurück zum Zitat Patra M, Karttunen M (2004) Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: diffusion, free energy of hydration and structural properties. J Comput Chem 25:678–689 Patra M, Karttunen M (2004) Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: diffusion, free energy of hydration and structural properties. J Comput Chem 25:678–689
164.
Zurück zum Zitat Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–15 Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–15
165.
Zurück zum Zitat Gao J, Habibollazadeh D, Shao L (1995) A polarizable intermolecular potential function for simulation of liquid alcohols. J Phys Chem 99:16460–16467 Gao J, Habibollazadeh D, Shao L (1995) A polarizable intermolecular potential function for simulation of liquid alcohols. J Phys Chem 99:16460–16467
166.
Zurück zum Zitat Gao J, Pavelites J, Habibollazadeh D (1996) Simulation of liquid amides using a polarizable intermolecular potential function. J Phys Chem 100:2689–2697 Gao J, Pavelites J, Habibollazadeh D (1996) Simulation of liquid amides using a polarizable intermolecular potential function. J Phys Chem 100:2689–2697
167.
Zurück zum Zitat Xie W, Pu J, MacKerell AD et al (2007) Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory Comput 3:1878–1889 Xie W, Pu J, MacKerell AD et al (2007) Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory Comput 3:1878–1889
168.
Zurück zum Zitat Ponder JW, Wu C, Ren P (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549–2564 Ponder JW, Wu C, Ren P (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549–2564
169.
Zurück zum Zitat Martin MG (2006) Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities. Fluid Phase Equilib 248:50–55 Martin MG (2006) Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities. Fluid Phase Equilib 248:50–55
170.
Zurück zum Zitat Dellis D, Samios J (2010) Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib 291:81–89 Dellis D, Samios J (2010) Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib 291:81–89
171.
Zurück zum Zitat Fernandez GA, Vrabec J, Hasse H (2005) Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation. Mol Sim 31:787–793 Fernandez GA, Vrabec J, Hasse H (2005) Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation. Mol Sim 31:787–793
172.
Zurück zum Zitat Fernandez GA, Vrabec J, Hasse H (2006) Shear viscosity and thermal conductivity of dipolar real fluids from molecular simulation. Cryogenics 46:711–717 Fernandez GA, Vrabec J, Hasse H (2006) Shear viscosity and thermal conductivity of dipolar real fluids from molecular simulation. Cryogenics 46:711–717
173.
Zurück zum Zitat Fermeglia M, Ferrone M, Pricl S (2003) Development of an all-atoms force field from ab initio calculations for alternative refrigerants. Fluid Phase Equilib 210:105–116 Fermeglia M, Ferrone M, Pricl S (2003) Development of an all-atoms force field from ab initio calculations for alternative refrigerants. Fluid Phase Equilib 210:105–116
174.
Zurück zum Zitat Huang YL, Heilig M, Hasse H et al (2010) VLE of hydrogen chloride, phosgene, benzene, chlorobenzene, ortho-dichlorobenzene and toluene by molecular simulation. AIChE J 57:1043–1060 Huang YL, Heilig M, Hasse H et al (2010) VLE of hydrogen chloride, phosgene, benzene, chlorobenzene, ortho-dichlorobenzene and toluene by molecular simulation. AIChE J 57:1043–1060
175.
Zurück zum Zitat Hunt PA (2006) The simulation of imidazolium-based ionic liquids. Mol Simul 32:1–10 Hunt PA (2006) The simulation of imidazolium-based ionic liquids. Mol Simul 32:1–10
176.
Zurück zum Zitat Liu X, Zhang S, Zhou G et al (2006) New force field for molecular simulation of guanidinium-based ionic liquids. J Phys Chem B 110:12062–12071 Liu X, Zhang S, Zhou G et al (2006) New force field for molecular simulation of guanidinium-based ionic liquids. J Phys Chem B 110:12062–12071
177.
Zurück zum Zitat Hellmann R, Bich E, Vogel E (2008) Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane. J Chem Phys 128:214303 Hellmann R, Bich E, Vogel E (2008) Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane. J Chem Phys 128:214303
178.
Zurück zum Zitat Hellmann R, Bich E, Vogel E (2008) Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon-neon interatomic potential and rovibrational spectra. Mol Phys 106:133–140 Hellmann R, Bich E, Vogel E (2008) Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon-neon interatomic potential and rovibrational spectra. Mol Phys 106:133–140
179.
Zurück zum Zitat Domański K, Kitao O, Nakanishi K (1994) A new potential model for carbon dioxide from ab initio calculations. Mol Simul 12:343–353 Domański K, Kitao O, Nakanishi K (1994) A new potential model for carbon dioxide from ab initio calculations. Mol Simul 12:343–353
180.
Zurück zum Zitat Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Elsevier, San Diego Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Elsevier, San Diego
181.
Zurück zum Zitat Panagiotopoulos AZ (1996) Current advances in Monte Carlo methods. Fluid Phase Equilib 116:257–266 Panagiotopoulos AZ (1996) Current advances in Monte Carlo methods. Fluid Phase Equilib 116:257–266
182.
Zurück zum Zitat Theodorou DN (2010) Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res 49:3047–3058 Theodorou DN (2010) Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res 49:3047–3058
183.
Zurück zum Zitat Allen MP, Tildesley DJ (eds) (1993) Computer simulation in chemical physics. Kluwer Academic, Dordrecht Allen MP, Tildesley DJ (eds) (1993) Computer simulation in chemical physics. Kluwer Academic, Dordrecht
184.
Zurück zum Zitat Amar JG (2006) The Monte Carlo method in science and engineering. Comput Sci Eng 8:9–19 Amar JG (2006) The Monte Carlo method in science and engineering. Comput Sci Eng 8:9–19
185.
Zurück zum Zitat Baus M, Rull LF, Ryckaert JP (eds) (1995) Observation and prediction of phase transitions in complex fluids. Kluwer Academic, Dordrecht Baus M, Rull LF, Ryckaert JP (eds) (1995) Observation and prediction of phase transitions in complex fluids. Kluwer Academic, Dordrecht
186.
Zurück zum Zitat Valleau JP (1991) Density-scaling: a new Monte Carlo technique in statistical mechanics. J Comput Phys 96:193–216 Valleau JP (1991) Density-scaling: a new Monte Carlo technique in statistical mechanics. J Comput Phys 96:193–216
187.
Zurück zum Zitat Ferrenberg AM, Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638 Ferrenberg AM, Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638
188.
Zurück zum Zitat Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198 Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198
189.
Zurück zum Zitat Kofke DA (1993) Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Mol Phys 78:1331–1336 Kofke DA (1993) Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Mol Phys 78:1331–1336
190.
Zurück zum Zitat Vrabec J, Hasse H (1995) Vapour liquid equilibria of mixtures from the NpT plus test particle method. Mol Phys 85:781–792 Vrabec J, Hasse H (1995) Vapour liquid equilibria of mixtures from the NpT plus test particle method. Mol Phys 85:781–792
191.
Zurück zum Zitat Boda D, Kristóf T, Liszi J et al (2001) A new simulation method for the determination of phase equilibria in mixtures in the grand canonical ensemble. Mol Phys 99:2011–2022 Boda D, Kristóf T, Liszi J et al (2001) A new simulation method for the determination of phase equilibria in mixtures in the grand canonical ensemble. Mol Phys 99:2011–2022
192.
Zurück zum Zitat Vrabec J, Hasse H (2002) Grand equilibrium: vapour-liquid equilibria by a new molecular simulation method. Mol Phys 100:3375–3383 Vrabec J, Hasse H (2002) Grand equilibrium: vapour-liquid equilibria by a new molecular simulation method. Mol Phys 100:3375–3383
193.
Zurück zum Zitat Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61:813–826 Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61:813–826
194.
Zurück zum Zitat Panagiotopoulos AZ (2000) Monte Carlo methods for phase equilibria of fluids. J Phys Condens Matter 12:25–52 Panagiotopoulos AZ (2000) Monte Carlo methods for phase equilibria of fluids. J Phys Condens Matter 12:25–52
195.
Zurück zum Zitat de Pablo JJ, Yan Q, Escobedo FA (1999) Simulation of phase transitions in fluids. Annu Rev Phys Chem 50:377–411 de Pablo JJ, Yan Q, Escobedo FA (1999) Simulation of phase transitions in fluids. Annu Rev Phys Chem 50:377–411
196.
Zurück zum Zitat Lamm MJ, Hall CK (2001) Molecular simulation of complete phase diagrams for binary mixtures. AIChE J 47:1664–1675 Lamm MJ, Hall CK (2001) Molecular simulation of complete phase diagrams for binary mixtures. AIChE J 47:1664–1675
197.
Zurück zum Zitat Johnson JK, Panagiotopoulos AZ, Gubbins KE (1994) Reactive canonical Monte Carlo: a new simulation technique for reacting or associating fluids. Mol Phys 81:717–733 Johnson JK, Panagiotopoulos AZ, Gubbins KE (1994) Reactive canonical Monte Carlo: a new simulation technique for reacting or associating fluids. Mol Phys 81:717–733
198.
Zurück zum Zitat Smith WR, Triska B (1994) The reaction ensemble method for the computer simulation of chemical and phase equilibria I. Theory and basic examples. J Chem Phys 100:3019–3027 Smith WR, Triska B (1994) The reaction ensemble method for the computer simulation of chemical and phase equilibria I. Theory and basic examples. J Chem Phys 100:3019–3027
199.
Zurück zum Zitat Kiyohara K, Spyriouni T, Gubbins KE et al (1996) Thermodynamic scaling Gibbs ensemble Monte Carlo: a new method for determination of phase coexistence properties of fluids. Mol Phys 89:965–974 Kiyohara K, Spyriouni T, Gubbins KE et al (1996) Thermodynamic scaling Gibbs ensemble Monte Carlo: a new method for determination of phase coexistence properties of fluids. Mol Phys 89:965–974
200.
Zurück zum Zitat Briano JG, Glandt ED (1984) Statistical thermodynamics of polydisperse fluids. J Chem Phys 80:3336–3343 Briano JG, Glandt ED (1984) Statistical thermodynamics of polydisperse fluids. J Chem Phys 80:3336–3343
201.
Zurück zum Zitat Kofke DA, Glandt ED (1988) Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol Phys 64:1105–1131 Kofke DA, Glandt ED (1988) Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol Phys 64:1105–1131
202.
Zurück zum Zitat Potoff JJ, Panagiotopoulos AZ (2000) Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations. J Chem Phys 112:6411–6416 Potoff JJ, Panagiotopoulos AZ (2000) Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations. J Chem Phys 112:6411–6416
203.
Zurück zum Zitat Singh JK, Errington JR (2006) Calculation of phase coexistence properties and surface tensions of n-alkanes with grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. J Phys Chem B 110:1369–1376 Singh JK, Errington JR (2006) Calculation of phase coexistence properties and surface tensions of n-alkanes with grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. J Phys Chem B 110:1369–1376
204.
Zurück zum Zitat Ungerer P, Boutin A, Fuchs AH (1999) Direct calculation of bubble points by Monte Carlo simulations. Mol Phys 97:523–539 Ungerer P, Boutin A, Fuchs AH (1999) Direct calculation of bubble points by Monte Carlo simulations. Mol Phys 97:523–539
205.
Zurück zum Zitat Escobedo FA (1998) Novel pseudoensembles for simulation of multicomponent phase equilibria. J Chem Phys 108:8761–8772 Escobedo FA (1998) Novel pseudoensembles for simulation of multicomponent phase equilibria. J Chem Phys 108:8761–8772
206.
Zurück zum Zitat van der Vegt NFA, Briels WJ, Wessling M et al (1999) The sorption induced glass transition in amorphous glassy polymers. J Chem Phys 110:11061–11069 van der Vegt NFA, Briels WJ, Wessling M et al (1999) The sorption induced glass transition in amorphous glassy polymers. J Chem Phys 110:11061–11069
207.
Zurück zum Zitat Widom B (1963) Some topics in the theory of fluids. J Chem Phys 39:2808–2812 Widom B (1963) Some topics in the theory of fluids. J Chem Phys 39:2808–2812
208.
Zurück zum Zitat Lyubartsev AP, Martsinovski AA, Shevkunov SV et al (1992) New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys 96:1776–1785 Lyubartsev AP, Martsinovski AA, Shevkunov SV et al (1992) New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys 96:1776–1785
209.
Zurück zum Zitat Nezbeda I, Kolafa J (1991) A new version of the insertion particle method for determining the chemical potential by Monte Carlo simulation. Mol Simul 5:391–403 Nezbeda I, Kolafa J (1991) A new version of the insertion particle method for determining the chemical potential by Monte Carlo simulation. Mol Simul 5:391–403
210.
Zurück zum Zitat Vrabec J, Kettler M, Hasse H (2002) Chemical potential of quadrupolar two-centre Lennard-Jones fluids by gradual insertion. Chem Phys Lett 356:431–436 Vrabec J, Kettler M, Hasse H (2002) Chemical potential of quadrupolar two-centre Lennard-Jones fluids by gradual insertion. Chem Phys Lett 356:431–436
211.
Zurück zum Zitat Maginn EJ, Bell AT, Theodorou DN (1995) Sorption thermodynamics, siting, and conformation of long n-alkanes in silicalite as predicted by configurational-bias Monte Carlo integration. J Phys Chem 99:2057–2079 Maginn EJ, Bell AT, Theodorou DN (1995) Sorption thermodynamics, siting, and conformation of long n-alkanes in silicalite as predicted by configurational-bias Monte Carlo integration. J Phys Chem 99:2057–2079
212.
Zurück zum Zitat Theodorou DN (2006) A reversible minimum-to-minimum mapping method for the calculation of free-energy differences. J Chem Phys 124:034109 Theodorou DN (2006) A reversible minimum-to-minimum mapping method for the calculation of free-energy differences. J Chem Phys 124:034109
213.
Zurück zum Zitat Kofke DA, Cummings PT (1997) Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation. Mol Phys 92:973–996 Kofke DA, Cummings PT (1997) Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation. Mol Phys 92:973–996
214.
Zurück zum Zitat Murad S, Gupta S (2000) A simple molecular dynamics simulation for calculating Henry’s constant and solubility of gases in liquids. Chem Phys Lett 319:60–64 Murad S, Gupta S (2000) A simple molecular dynamics simulation for calculating Henry’s constant and solubility of gases in liquids. Chem Phys Lett 319:60–64
215.
Zurück zum Zitat Sadus RJ (1997) Molecular simulation of Henry’s constant at vapor-liquid and liquid-liquid phase boundaries. J Phys Chem B 101:3834–3838 Sadus RJ (1997) Molecular simulation of Henry’s constant at vapor-liquid and liquid-liquid phase boundaries. J Phys Chem B 101:3834–3838
216.
Zurück zum Zitat Shing KS, Gubbins KE, Lucas K (1988) Henry constants in nonideal fluid mixtures. Computer simulation and theory. Mol Phys 65:123–1252 Shing KS, Gubbins KE, Lucas K (1988) Henry constants in nonideal fluid mixtures. Computer simulation and theory. Mol Phys 65:123–1252
217.
Zurück zum Zitat Green MS (1954) Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys 22:398–414 Green MS (1954) Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys 22:398–414
218.
Zurück zum Zitat Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570–586 Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570–586
219.
Zurück zum Zitat Ciccotti G, Frenkel D, McDonald IR (1987) Simulation of liquids and solids. North-Holland, Amsterdam Ciccotti G, Frenkel D, McDonald IR (1987) Simulation of liquids and solids. North-Holland, Amsterdam
220.
Zurück zum Zitat Rowley RL, Painter MM (1997) Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. Int J Thermophys 18:1109–1121 Rowley RL, Painter MM (1997) Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. Int J Thermophys 18:1109–1121
221.
Zurück zum Zitat Hoover WG, Evans DJ, Hickman RB et al (1980) Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys Rev A 22:1690–1697 Hoover WG, Evans DJ, Hickman RB et al (1980) Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys Rev A 22:1690–1697
222.
Zurück zum Zitat Ladd AJC (1984) Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids. Mol Phys 53:459–463 Ladd AJC (1984) Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids. Mol Phys 53:459–463
223.
Zurück zum Zitat Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C 5:1921–1929 Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C 5:1921–1929
224.
Zurück zum Zitat Evans DJ, Morris GP (1990) Statistical mechanics of nonequilibrium liquids. Academic Press, London Evans DJ, Morris GP (1990) Statistical mechanics of nonequilibrium liquids. Academic Press, London
225.
Zurück zum Zitat Cummings PT, Evans DJ (1992) Nonequilibrium molecular dynamics properties and non-Newtonian fluid approaches to transport rheology. Ind Eng Chem Res 31:1237–1252 Cummings PT, Evans DJ (1992) Nonequilibrium molecular dynamics properties and non-Newtonian fluid approaches to transport rheology. Ind Eng Chem Res 31:1237–1252
226.
Zurück zum Zitat Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106:6082–6085 Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106:6082–6085
227.
Zurück zum Zitat Müller-Plathe F, Bordat P (2004) Reverse non-equilibrium molecular dynamics. Lect Notes Phys 640:310–326 Müller-Plathe F, Bordat P (2004) Reverse non-equilibrium molecular dynamics. Lect Notes Phys 640:310–326
228.
Zurück zum Zitat Chen T, Smit B, Bell AT (2009) Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities? J Chem Phys 131:246101 Chen T, Smit B, Bell AT (2009) Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities? J Chem Phys 131:246101
229.
Zurück zum Zitat Sadus RJ (2002) Molecular simulation of fluids: theory, algorithms and object-orientation. Elsevier, Amsterdam Sadus RJ (2002) Molecular simulation of fluids: theory, algorithms and object-orientation. Elsevier, Amsterdam
230.
Zurück zum Zitat Smith W, Yong CW, Rodger PM (2002) DL-POLY: application to molecular simulation. Mol Simul 28:385–471 Smith W, Yong CW, Rodger PM (2002) DL-POLY: application to molecular simulation. Mol Simul 28:385–471
231.
Zurück zum Zitat Hess B, Kutzner C, van der Spoel D et al (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447 Hess B, Kutzner C, van der Spoel D et al (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447
232.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19 Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19
233.
Zurück zum Zitat Refson K (2000) Moldy: a portable molecular dynamics simulation program for serial and parallel computers. Comput Phys Commun 126:309–328 Refson K (2000) Moldy: a portable molecular dynamics simulation program for serial and parallel computers. Comput Phys Commun 126:309–328
234.
Zurück zum Zitat Deublein S, Eckl B, Stoll J et al (2010) ms2: a molecular simulation tool for thermodynamic properties. Comput Phys Commun, in press Deublein S, Eckl B, Stoll J et al (2010) ms2: a molecular simulation tool for thermodynamic properties. Comput Phys Commun, in press
235.
Zurück zum Zitat Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802 Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802
236.
Zurück zum Zitat Ponder JW (2009) TINKER: software tools for molecular design, 5.0. Washington University School of Medicine, Saint Louis Ponder JW (2009) TINKER: software tools for molecular design, 5.0. Washington University School of Medicine, Saint Louis
237.
Zurück zum Zitat Müller-Plathe F (1993) YASP: a molecular simulation package. Comput Phys Commun 78:77–94 Müller-Plathe F (1993) YASP: a molecular simulation package. Comput Phys Commun 78:77–94
238.
Zurück zum Zitat Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26:1689–1700 Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26:1689–1700
239.
Zurück zum Zitat Jorgensen WL, Ibrahim M (1980) The structure and properties of liquid ammonia. J Am Chem Soc 102:3309–3315 Jorgensen WL, Ibrahim M (1980) The structure and properties of liquid ammonia. J Am Chem Soc 102:3309–3315
240.
Zurück zum Zitat Hinchliffe A, Bounds DG, Klein ML et al (1981) Intermolecular potentials for ammonia based on SCF-MO calculations. J Chem Phys 74:1211–1217 Hinchliffe A, Bounds DG, Klein ML et al (1981) Intermolecular potentials for ammonia based on SCF-MO calculations. J Chem Phys 74:1211–1217
241.
Zurück zum Zitat Sagarik KP, Ahlrichs R, Brode S (1986) Intermolecular potentials for ammonia based on the test particle mode and the coupled pair functional method. Mol Phys 57:1247–1264 Sagarik KP, Ahlrichs R, Brode S (1986) Intermolecular potentials for ammonia based on the test particle mode and the coupled pair functional method. Mol Phys 57:1247–1264
242.
Zurück zum Zitat Caillol JM, Levesque D, Weis JJ (1987) A theoretical study of a polar-polarizable model for liquid ammonia. Mol Phys 62:1225–1238 Caillol JM, Levesque D, Weis JJ (1987) A theoretical study of a polar-polarizable model for liquid ammonia. Mol Phys 62:1225–1238
243.
Zurück zum Zitat Mansour KA, Murad S (1987) A computer simulation study of fluid ammonia. Fluid Phase Equilib 37:305–325 Mansour KA, Murad S (1987) A computer simulation study of fluid ammonia. Fluid Phase Equilib 37:305–325
244.
Zurück zum Zitat Hannongbua SV, Ishida T, Spohr E et al (1988) Molecular dynamics study of a lithium ion in ammonia. Z Naturforsch 43a:572–582 Hannongbua SV, Ishida T, Spohr E et al (1988) Molecular dynamics study of a lithium ion in ammonia. Z Naturforsch 43a:572–582
245.
Zurück zum Zitat Gao J, Xia X, George TF (1993) Importance of bimolecular interactions in developing empirical potential functions for liquid ammonia. J Phys Chem 97:9241–9247 Gao J, Xia X, George TF (1993) Importance of bimolecular interactions in developing empirical potential functions for liquid ammonia. J Phys Chem 97:9241–9247
246.
Zurück zum Zitat Kristóf T, Vorholz J, Liszi J et al (1999) A simple effective pair potential for the molecular simulation of the thermodynamic properties of ammonia. Mol Phys 97:1129–1137 Kristóf T, Vorholz J, Liszi J et al (1999) A simple effective pair potential for the molecular simulation of the thermodynamic properties of ammonia. Mol Phys 97:1129–1137
247.
Zurück zum Zitat Zhang L, Siepmann JI (2010) Development of the TraPPE force field for ammonia. Collect Czech Chem Commun 75:577–591 Zhang L, Siepmann JI (2010) Development of the TraPPE force field for ammonia. Collect Czech Chem Commun 75:577–591
248.
Zurück zum Zitat Benedict WS, Plyler EK (1957) Vibrationrotation bands of ammonia: II. The molecular dimensions and harmonic frequencies of ammonia and deuterated ammonia. Can J Phys 35:1235–1241 Benedict WS, Plyler EK (1957) Vibrationrotation bands of ammonia: II. The molecular dimensions and harmonic frequencies of ammonia and deuterated ammonia. Can J Phys 35:1235–1241
249.
Zurück zum Zitat Tillner-Roth R, Harms-Watzenberg F, Baehr HD (1993) Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20:167–181 Tillner-Roth R, Harms-Watzenberg F, Baehr HD (1993) Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20:167–181
250.
Zurück zum Zitat Gross T, Buchhauser J, Price W et al (1997) The p, T-dependence of self-diffusion in fluid ammonia. J Mol Liq 73:433–444 Gross T, Buchhauser J, Price W et al (1997) The p, T-dependence of self-diffusion in fluid ammonia. J Mol Liq 73:433–444
251.
Zurück zum Zitat Tufeu R, Ivanov DY, Garrabas Y et al (1984) Thermal conductivity of ammonia in a large temperature and pressure range including the critical region. Ber Bunsenges Phys Chem 88:422–427 Tufeu R, Ivanov DY, Garrabas Y et al (1984) Thermal conductivity of ammonia in a large temperature and pressure range including the critical region. Ber Bunsenges Phys Chem 88:422–427
252.
Zurück zum Zitat Schnabel T, Vrabec J, Hasse H (2005) Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: prediction from molecular simulation. Fluid Phase Equilib 233:134–143, 236:272, 239:125–126 Schnabel T, Vrabec J, Hasse H (2005) Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: prediction from molecular simulation. Fluid Phase Equilib 233:134–143, 236:272, 239:125–126
253.
Zurück zum Zitat Hayduk W, Cheng SC (1970) Solubilities of ethane and other gases in normal paraffin solvents. Can J Chem Eng 48:93–99 Hayduk W, Cheng SC (1970) Solubilities of ethane and other gases in normal paraffin solvents. Can J Chem Eng 48:93–99
254.
Zurück zum Zitat Kierzkowska-Pawlak H, Zarzycki R (2002) Solubility of carbon dioxide and nitrous oxide in water + methyldiethanolamine and ethanol + methyldiethanolamine solutions. J Chem Eng Data 47:1506–1509 Kierzkowska-Pawlak H, Zarzycki R (2002) Solubility of carbon dioxide and nitrous oxide in water + methyldiethanolamine and ethanol + methyldiethanolamine solutions. J Chem Eng Data 47:1506–1509
255.
Zurück zum Zitat Kunerth W (1922) Solubility of carbon dioxide and nitrous oxide in certain solvents. Phys Rev 19:512–524 Kunerth W (1922) Solubility of carbon dioxide and nitrous oxide in certain solvents. Phys Rev 19:512–524
256.
Zurück zum Zitat Luehring P, Schumpe A (1989) Gas solubilities (hydrogen, helium, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide) in organic liquids at 293.2 K. J Chem Eng Data 34:250–252 Luehring P, Schumpe A (1989) Gas solubilities (hydrogen, helium, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide) in organic liquids at 293.2 K. J Chem Eng Data 34:250–252
257.
Zurück zum Zitat Postigo MA, Katz M (1987) Solubility and thermodynamics of carbon dioxide in aqueous ethanol solutions. J Solution Chem 16:1015–1024 Postigo MA, Katz M (1987) Solubility and thermodynamics of carbon dioxide in aqueous ethanol solutions. J Solution Chem 16:1015–1024
258.
Zurück zum Zitat Takahashi M, Kobayashi Y, Takeuchi H (1982) Diffusion coefficients and solubilities of carbon dioxide in binary mixed solvents. J Chem Eng Data 27:328–331 Takahashi M, Kobayashi Y, Takeuchi H (1982) Diffusion coefficients and solubilities of carbon dioxide in binary mixed solvents. J Chem Eng Data 27:328–331
259.
Zurück zum Zitat Tokunaga J, Nitta T, Katayama T (1969) Solubility of carbon dioxide in aqueous alcohol solutions. Methanol-water, ethanol-water systems. Chem Eng Jpn 33:775–779 Tokunaga J, Nitta T, Katayama T (1969) Solubility of carbon dioxide in aqueous alcohol solutions. Methanol-water, ethanol-water systems. Chem Eng Jpn 33:775–779
260.
Zurück zum Zitat Fredenslund A, Sather GA (1970) Gas-liquid equilibirum of the oxygen-carbon dioxide system. J Chem Eng Data 15:17–22 Fredenslund A, Sather GA (1970) Gas-liquid equilibirum of the oxygen-carbon dioxide system. J Chem Eng Data 15:17–22
Metadaten
Titel
Thermodynamic Properties for Applications in Chemical Industry via Classical Force Fields
verfasst von
Gabriela Guevara-Carrion
Hans Hasse
Jadran Vrabec
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2011_164