1.
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature,
410, 63 (2001).
2.
D. H. A. Blank, H. Hilgenkamp, A. Brinkman, D. Mijatovic, G. Rijnders, and H. Rogalla, Superconducting Mg–B films by pulsed-laser deposition in an in situ two-step process using multicomponent targets, Applied Physics Letters,
79, 394–396 (2001).
3.
K. Ueda and M. Naito, As-grown superconducting MgB 2 thin films prepared by molecular beam epitaxy, Applied Physics Letters,
79, 2046–2048 (2001).
4.
W. Jo, J. U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley, and R. H. Hammond, In situ growth of superconducting MgB
2 thin films with preferential orientation by molecular-beam epitaxy, Applied Physics Letters,
80, 3563–3565 (2002).
5.
S.-D. Bu, D. M. Kim, J. H. Choi, J. Giencke, E. E. Hellstrom, D. C. Larbalestier
, et al., Synthesis and properties of c-axis oriented epitaxial MgB 2 thin films, Applied Physics Letters,
81, 1851–1853 (2002).
6.
M. E. Yakıncı, Y. Balcı, M. A. Aksan, H. I. Adigüzel, and A. Gencer, Degradation of superconducting properties in MgB 2 by formation of the MgB
4 phase, Journal of superconductivity,
15, 607–611 (2002).
7.
Z.-K. Liu, D. G. Schlom, Q. Li, and X. X. Xi, Thermodynamics of the Mg–B system: implications for the deposition of MgB
2 thin films, Applied Physics Letters,
78, 3678–3680 (2001).
8.
S. Kim, D. S. Stone, J.-I. Cho, C.-Y. Jeong, C.-S. Kang, and J.-C. Bae, Phase stability determination of the Mg–B binary system using the CALPHAD method and ab initio calculations, Journal of Alloys and Compounds,
470, 85–89 (2009).
9.
L. P. Cook, R. Klein, W. Wong-Ng, Q. Huang, R. A. Ribeiro, and P. C. Canfield, Thermodynamics of MgB
2 by calorimetry and Knudsen thermogravimetry, IEEE transactions on applied superconductivity,
15, 3227–3229, (2005).
10.
G. Balducci, S. Brutti, A. Ciccioli, G. Gigli, P. Manfrinetti, A. Palenzona
, et al., Thermodynamics of the intermediate phases in the Mg–B system, Journal of Physics and Chemistry of Solids,
66, 292–297 (2005).
11.
S. Brutti, A. Ciccioli, G. Balducci, and G. Gigli, Vaporization thermodynamics of MgB
2 and MgB
4, Applied Physics Letters,
80, 2892–2894 (2002).
12.
M. A. Imam and R. G. Reddy, Thermodynamic Studies on the Mg-B System Using Solid State Electrochemical Cells, in
Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, 457–464 (Springer, 2017).
13.
Q. Z. Shi, Y. C. Liu, Q. Zhao, and Z. Q. Ma, Phase formation process of bulk MgB
2 analyzed by differential thermal analysis during sintering, Journal of alloys and compounds,
458, 553–557 (2008).
14.
Z. Ma and Y. Liu, The varied kinetics mechanisms in the synthesis of MgB
2 from elemental powders by low-temperature sintering, Materials Chemistry and Physics,
126, 114–117 (2011).
15.
Z. Y. Fan, D. G. Hinks, N. Newman, and J. M. Rowell, Experimental study of MgB
2 decomposition, Applied Physics Letters,
79, 87–89 (2001).
16.
M. R. Bogala and R. G. Reddy, Reaction kinetic studies of metal-doped magnesium silicides, Journal of Materials Science,
52, 11962–11976 (2017).
17.
M. Ramachandran, D. Mantha, C. Williams, and R. G. Reddy, Oxidation and Diffusion in Ti-Al-(Mo, Nb) Intermetallics, Metallurgical and Materials Transactions A,
42, 202–210(2011).
18.
I. C. I. Okafor, X. Wen, and R. G. Reddy, Interdiffusion in the TiO
2 oxidation product of Ti
3Al, Metallurgical and Materials Transactions A,
32, 491–495 (2001).
19.
M. A. Imam, S. Jeelani, V. K. Rangari, M. G. Gome, and E. A. B. Moura, Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes, International Journal of Nanoscience,
15, 1650004 (2016).
20.
G. N. Lewis, Autocatalytic decomposition of silver oxide, 719–733 (1905).
21.
P. Vallet, Theoretical study of the decomposition of bodies in linearly increasing temperature,
Comptes Rendus,
200, 315–17 (1935).
22.
E. S. Freeman and B. Carroll, The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, The Journal of Physical Chemistry,
62, 394–397 (1958).
23.
A. W. Coats and J. P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature,
201, 68–69 (1964).
24.
A. Khawam and D. R. Flanagan, Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies, Thermochimica Acta,
436, 101–112 (2005).
25.
Standard Test Method for Thermal Stability by Thermogravimetry, (ASTM International, 2011).
26.
P. Toulemonde, N. Musolino, and R. Flükiger, High-pressure synthesis of pure and doped superconducting MgB
2 compounds, Superconductor Science and Technology,
16, 231 (2003).
27.
Y. Guo, W. Zhang, X. Zhou, and T. Bao, Magnesium boride sintered as high-energy fuel, Journal of thermal analysis and calorimetry,
113,787–791 (2013).
28.
M. W. Chase, J. L. Curnutt, J. R. Downey, R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, JANAF Thermochemical Tables, 1985 Supplement, Journal of Physical and Chemical Reference Data,
1, 226 (1985).
29.
S. C. Yan, G. Yan, C. F. Liu, Y. F. Lu, and L. Zhou, Experimental study on phase transformation between MgB
2 and MgB
4, Journal of the American Ceramic Society,
90, 2184–2188 (2007).
30.
G. A. Rybakova, L. A. Pavlinova, M. P. Morozova, and D. V. Korol’kov, Enthalpy of formation and nature of the phases in the beryllium-boron, magnesium-boron, iron-sulfur, cobalt-sulfur, and nickel-sulfur systems, Probl. Sov. Khim. Koordinates Doedin. 146 (1978).
31.
S. M. Ariya, M. P. Morozova, G. A. Semenov, and G. A. Ryabakova, Magnesium-boron system and determination of the enthalpy of formation of magnesium borides, Zhur. Fiz. Khim.,
45, 181 (1971).